Analysis of the Micro-Physical Characteristics of the Sea of Clouds Phenomena in Jiuxian Mountain Based on Multiple Source Observations
Abstract
:1. Introduction
2. Data and Methods
3. Inversion of Micro-Physical Parameters of the Sea of Clouds
4. Atmospheric Stratification Feature of the Sea of Clouds
5. Conclusions
- (1)
- According to products from cloud radar, it is found that atmospheric motion within clouds exhibits “downdraft at cloud top-updraft at cloud bottom” during the thickening stage. The zero vertical velocity area is close to the maximum liquid water content, and a weak thermal inversion layer emerges at a height of 1336–1522 m; the bottom of this inversion layer corresponds to the strong echo band. Cloud particles concentrate in the middle of clouds and make the sea of clouds thicker because of the weakening of the updraft.
- (2)
- During the maintenance stage, areas with high liquid water content mainly concentrate at the cloud top, accompanied by alternately upward and downward motion, because of which little cloud particles aggregate and accumulate into clouds, forming a strong and persistent echo band. The thermal inversion layer at 1336–1522 m height persists and develops slowly; by this time, the southeasterly slope in the lower level turns easterly. The Cn profile indicates a double-peak structure, which corresponds to the double strong echo bands detected by cloud radar.
- (3)
- During the dissipation stage, the inversion layer intensifies, the thickness of which increases to the top of Jiuxian Mountain (1654.6 m), a strong echo band descends from the cloud top to the middle part, and the downdraft intensifies compared to the thickening and maintenance stage. Exchanging with dry air is profound due to the unsaturation of water vapor; consequently, the sizes and number concentrations of cloud particles decrease because of the evaporation of cloud particles; a strong echo band gradually narrows down, that is, the cloud body descends and becomes thinner.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Yang, X.; Wang, X.; Zhang, X. The Forecast of the Snow Scenery for Tour Weather Service at Lushan Mountain, China. Meteorol. Mon. 2007, 33, 34–40. [Google Scholar]
- Snepenger, D.; Houser, B.; Snepenger, M. Seasonality demand. Ann. Tour. Res. 1990, 17, 628–630. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, K.; Yang, B.; Cheng, T.; Jin, Q.; Wu, J. Synoptic Analysis of a Continuous Cloud Deck Event in Huangshan Mountain, China. Meteorol. Mon. 2005, 31, 73–76. [Google Scholar]
- Zhou, B.; Zhao, J.; Qing, Q.; Yang, S.; Liu, J. Study on Tourism Landscape Snowfall Forecast of Ski Resorts in Xiling Snow Mountain in Autumn and Winter, China. Plateau Mt. Meteorol. Res. 2020, 40, 74–78. [Google Scholar]
- Qiao, S.; Da, Y.; Cao, H. Analysis of time variation and meteorological conditions of Huashan cloud deck, China. J. Shaanxi Meteorol. 2016, 27–30. [Google Scholar]
- Fu, B.; Lai, Y.; Wang, W. Analysis of meteorological characteristics and preliminary prediction of cloud deck in Danxia Mountain, China. Agric. Technol. 2019, 39, 137–140. [Google Scholar] [CrossRef]
- Shan, Q.; Feng, G.; Liang, X. Spatial and temporal variation characteristics of the sea of clouds in Yandang Mountain and its relationship with meteorological factors, China. J. Zhejiang Meteorol. 2014, 34–37. [Google Scholar]
- Yang, M. A Study on Retrieving Cloud Microphysical Parameters from Millimeter-Wave Radar Observations, China; Nanjing University of Information Science and Technology: Nanjing, China, 2019. [Google Scholar]
- Shen, F.; Song, L.; He, Z.; Xu, D.; Chen, J.; Huang, L. Impacts of adding hydrometeor control variables on the radar reflectivity data assimilation for the 6–8 August 2018 mesoscale convective system case. Atmos. Res. 2023, 295, 107–120. [Google Scholar] [CrossRef]
- Frisch, A.S.; Lenschow, D.H.; Fairall, C.W.; Schubert, W.H.; Gibson, J.S. Doppler radar measurements of turbulence in marine stratiform cloud during ASTEX. J. Atmos. Sci. 1995, 52, 2800–2808. [Google Scholar] [CrossRef]
- Frisch, A.S.; Feingold, G.; Fairall, C.W.; Uttal, T.; Snider, J.B. On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res. Atmos. 1998, 103, 23195–23197. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, L.; Zheng, Z.; Xie, X. Ka-band millimeter wave cloud radar data quality control, China. J. Infrared Millim. Waves 2016, 35, 748–757. [Google Scholar]
- Wei, K.; Huang, X.; Huang, J.; He, H.; Chen, H. Experiment of Retrieving Cloud Micro-physics Parameters by Combining Millimeter-wave Cloud Radar and Ground-based Microwave Radiometer, China. Sci. Technol. Eng. 2015, 8–17. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, S.; Dai, T. Analysis and Research on the Detection Capability of Ka-band Millimeter Wave Cloud Radar, China. J. Chengdu Univ. Inf. Technol. 2016, 29–34. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, T.; Wang, F.; Sun, G.; Liu, Q.; Qing, C.; Li, X.B.; Weng, N.Q.; Zhu, W.J. Influence of low clouds on atmospheric refractive index structure constant based on radiosonde data, China. Acta Phys. Sin. 2022, 71, 352–361. [Google Scholar] [CrossRef]
- Huang, X.; Lu, L.; Hong, T.; Mei, Y.; Yang, M. A case study on the retrieval of microphysical parameters and in-cloud stratus turbulent dissipation rate by millimeter-wave cloud radar measurement, China. Trans. Atmos. Sci. 2020, 43, 908–916. [Google Scholar] [CrossRef]
- Gossard, E.E. Measurement of cloud droplet size spectra by doppler radar. J. Atmos. Ocean. Technol. 1994, 11, 712–726. [Google Scholar] [CrossRef]
- Gossard, E.E.; Snider, J.B.; Clothiaux, E.E.; Martner, B.; Gibson, J.S.; Kropfli, R.A.; Frisch, A.S. The potential of 8-mm radars for remotely sensing cloud drop size distributions. J. Atmos. Ocean. Technol. 1997, 14, 76–87. [Google Scholar] [CrossRef]
- Atlas, D. The estimation of cloud parameters by radar. J. Atmos. Sci. 2010, 11, 309–317. [Google Scholar] [CrossRef]
- Deng, M.; Mace, G.G. Cirrus microphysical properties and air motion statistics using cloud radar doppler moments. Part I: Algorithm description. J. Appl. Meteorol. Climatol. 2006, 45, 1690–1709. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Xia, X.; Wei, C.W. Dynamic and thermodynamic features of low and middle clouds derived from atmospheric radiation measurement program mobile facility radiosonde data at Shouxian, China. Adv. Atmos. Sci. 2015, 33, 21–33. [Google Scholar] [CrossRef]
- Sauvageot, H.; Omar, J. Radar Reflectivity of Cumulus Clouds. J. Atmos. Ocean. Technol. 1987, 4, 264–272. [Google Scholar] [CrossRef]
- Zhang, Z.; Xi, S.; Yu, Y. Climatic characteristics and variations of the gelivation weathers in China during 1961–2012, China. J. Glaciol. Geocryol. 2015, 37, 1435–1442. [Google Scholar]
- Zhang, Q.; Xiang, Y.; Wang, Y.; Wang, L.; Lu, C. Research on the Method of Fog Potential Forecast in Fuyang of Anhui, China. J. Arid Meteorol. Arid Meteorol. 2015, 33, 1045–1049. [Google Scholar]
- Zhang, X.; Xu, D.; Li, X. Nonlinear Bias Correction of the FY-4A AGRI Infrared Radiance Data Based on the Random Forest. Remote Sens. 2023, 15, 1809. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Liu, Z.; Shen, F. All-sky infrared radiance data assimilation of FY-4A AGRI with different physical parameterizations for the prediction of an extremely heavy rainfall event. Atmos. Res. 2023, 293, 106898. [Google Scholar] [CrossRef]
- Matrosov, S.Y. Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters. J. Geophys. Res. Atmos. 1999, 104, 16741–16753. [Google Scholar] [CrossRef]
- Shen, F.; Shu, A.; Liu, Z.; Liu, Z.; Li, H.; Jiang, L.; Zhang, T.; Xu, D. Assimilating FY-4A AGRI Radiances with a Channel Sensitive Cloud Detection Scheme for the Analysis and Forecast of Multiple Typhoons. Adv. Atmos. Sci. 2023, in press. [Google Scholar]
- Navas-López, J.F.; Darbyshire, R.; Song, X.; Wenden, B.; Close, D. Modelling cherry full bloom using ‘space-for-time’ across climatically diverse growing environments. Agric. Forest Meteorol. 2020, 284, 107901. [Google Scholar] [CrossRef]
- Li, G. Progress and Prospects in Research of Mountain Meteorology in China During the Past 25 Years, China. Adv. Meteorol. Sci. Technol. 2016, 6, 115–122. [Google Scholar]
- Shen, F.; Min, J.; Xu, D. Assimilation of radar radial velocity data with the WRF Hybrid ETKF–3DVAR system for the prediction of Hurricane Ike (2008). Atmos. Res. 2016, 169, 127–138. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Min, J.; Chu, Z.; Li, X. Assimilation of radar radial velocity data with the WRF Hybrid 4DEnVar system for the prediction of Hurricane Ike (2008). Atmos. Res. 2020, 230, 104622. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Hong, L.; Liu, R. Impact of radar data assimilation on a squall line over the Yangtze-Huaihe River Basin with a radarreflectivity operator accounting for ice-phase hydrometeors. Meteorol. Appl. 2021, 28, e1967. [Google Scholar] [CrossRef]
- Revilloud, M.; Loubier, J.C.; Doctor, M.; Kanevski, M.; Timonin, V.; Schumacher, M. Artificial Snow Optimization in Winter Sport Destinations Using a Multi-Agent Simulation; Springer: Berlin/Heidelberg, Germany, 2014; Volume 9, pp. 279–299. [Google Scholar] [CrossRef]
- Ding, S.; Duan, W.; Zhu, Y.; Li, G. Forecasting of Hani cloud sea landscape in Yuanjiang county of Yunnan province based on multiple models. J. Meteorol. Environ. 2020, 36, 106–112. [Google Scholar] [CrossRef]
- Zeng, Z.; Zheng, J.; Yang, H.; Zheng, M.; Zeng, Y. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J. Appl. Meteorol. Sci. 2021, 32, 347–357. [Google Scholar] [CrossRef]
- Shen, F.; Song, L.; Li, H.; He, Z.; Xu, D. Effects of different momentum control variables in radar data assimilation on the analysis and forecast of strong convective systems under the background of northeast cold vortex. Atmos. Res. 2022, 280, 106415. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Operating frequency | 35 GHz ± 500 MHz |
Beamwidth | 0.4° |
Pulse repetition rate | 5988~16,666 Hz |
Peak power | 20 W |
Detection range | 0.12 km~20.07 km |
Azimuth angle | 0° |
Pitch angle | 90° |
Spatial resolution | 30 m |
Temporal resolution | 1 min |
Scan mode (4) | Boundary mode |
Mid-cloud mode | |
Cirrus mode | |
Precipitation mode |
Parameter | Boundary Mode | Mid-Cloud Mode | Cirrus Mode | Precipitation Mode |
---|---|---|---|---|
Pulse width (μs) | 0.2 | 8 | 24 | 0.2 |
Pulse repetition rate (Hz) | 16,666 | 8333 | 5988 | 5988 |
Number of coherent accumulations | 4 | 2 | 1 | 1 |
Number of incoherent accumulations | 16 | 32 | 32 | 32 |
Effective height detection (km) | 0.12~7.5 | 1.47~7.5 | 3.87~20 | 0.12~20 |
Maximum no-blur speed (m/s) | 8.93 | 8.93 | 12.83 | 12.83 |
Velocity resolution (cm/s) | 6.98 | 6.98 | 10.02 | 10.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Lin, Z.; Zhou, J.; Han, G.; Chen, Z.; Yang, Q. Analysis of the Micro-Physical Characteristics of the Sea of Clouds Phenomena in Jiuxian Mountain Based on Multiple Source Observations. Atmosphere 2024, 15, 207. https://doi.org/10.3390/atmos15020207
Cheng S, Lin Z, Zhou J, Han G, Chen Z, Yang Q. Analysis of the Micro-Physical Characteristics of the Sea of Clouds Phenomena in Jiuxian Mountain Based on Multiple Source Observations. Atmosphere. 2024; 15(2):207. https://doi.org/10.3390/atmos15020207
Chicago/Turabian StyleCheng, Si, Zilun Lin, Jianding Zhou, Geng Han, Zhenhao Chen, and Qingbo Yang. 2024. "Analysis of the Micro-Physical Characteristics of the Sea of Clouds Phenomena in Jiuxian Mountain Based on Multiple Source Observations" Atmosphere 15, no. 2: 207. https://doi.org/10.3390/atmos15020207
APA StyleCheng, S., Lin, Z., Zhou, J., Han, G., Chen, Z., & Yang, Q. (2024). Analysis of the Micro-Physical Characteristics of the Sea of Clouds Phenomena in Jiuxian Mountain Based on Multiple Source Observations. Atmosphere, 15(2), 207. https://doi.org/10.3390/atmos15020207