Comparison of Exposure to Pb and Mn Levels by Using Environmental Personal Monitors and Biomarkers in Relation to Cognitive and Motor Function
Abstract
:1. Introduction
2. Methods
2.1. Design, Area of Study, and Participants
2.2. Cognitive and Motor Function Tests and Data Collection
2.3. Biomarker Sampling and Analysis
2.4. PEM Sampling and Analysis
2.5. Statistical Analysis
3. Results
3.1. Basal Characteristics and Levels of Pb and Mn in the Study Population
3.2. Associations between Pb and Mn Levels and Cognitive Function Results
3.3. Associations between Pb and Mn Levels and Motor Function Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission (EC). Council Directive 2004/107/EC, Directive of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Eur. Parliam. Counc. Eur. Union Off. J. 2004, L23, 3–16. [Google Scholar]
- European Commission (EC). Council Directive 2008/50/EC, Directive of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Eur. Parliam. Counc. Eur. Union Off. J. 2008, L152, 1–44. [Google Scholar]
- U.S. EPA (Environmental Protection Agency). Review of the National Ambient Air Quality Standards for Lead; 40 CFR Part 50. Rules and Regulations. Federal Register; Environmental Protection Agency: Washington, DC, USA, 2016; Volume 81, pp. 71906–71943. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead. Agency for Toxic Substances and Disease Registry; U.S. Department of Health and Human Services: Washington, DC, USA, 2020. [Google Scholar]
- Egan, K.B.; Cornwell, C.R.; Courtney, J.G.; Ettinger, A.S. Blood Lead Levels in U.S. Children Ages 1–11 Years, 1976–2016. Environ. Health Perspect. 2021, 129, 37003. [Google Scholar] [CrossRef]
- Tsoi, M.-F.; Cheung, C.-L.; Cheung, T.T.; Cheung, B.M.Y. Continual Decrease in Blood Lead Level in Americans: United States National Health Nutrition and Examination Survey 1999–2014. Am. J. Med. 2016, 129, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Pirkle, J.L.; Brody, D.J.; Gunter, E.W.; Kramer, R.A.; Paschal, D.C.; Flegal, K.M.; Matte, T.D. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES). JAMA 1994, 272, 284–291. [Google Scholar] [CrossRef]
- Weuve, J.; Korrick, S.A.; Weisskopf, M.A.; Ryan, L.M.; Schwartz, J.; Nie, H.; Grodstein, F.; Hu, H. Cumulative exposure to lead in relation to cognitive function in older women. Environ. Health Perspect. 2009, 117, 574–580. [Google Scholar] [CrossRef]
- Power, M.C.; Korrick, S.; Tchetgen, E.J.T.; Nie, L.H.; Grodstein, F.; Hu, H.; Weuve, J.; Schwartz, J.; Weisskopf, M.G. Lead exposure and rate of change in cognitive function in older women. Environ. Res. 2014, 129, 69–75. [Google Scholar] [CrossRef]
- Weisskopf, M.G.; Proctor, S.P.; Wright, R.O.; Schwartz, J.; Spiro, A.I.; Sparrow, D.; Nie, H.; Hu, H. Cumulative lead exposure and cognitive performance among elderly men. Epidemiology 2007, 18, 59–66. [Google Scholar] [CrossRef]
- Seo, J.; Lee, B.-K.; Jin, S.-U.; Park, J.W.; Kim, Y.-T.; Ryeom, H.-K.; Lee, J.; Suh, K.J.; Kim, S.H.; Park, S.-J.; et al. Lead-induced impairments in the neural processes related to working memory function. PLoS ONE 2014, 9, e105308. [Google Scholar] [CrossRef]
- Bleecker, M.L.; Lindgren, K.N.; Ford, P.D. Differential contribution of current and cumulative indices of lead dose to neuropsychological performance by age. Neurology 1997, 48, 639–645. [Google Scholar] [CrossRef]
- Ryan, C.M.; Morrow, L.; Parkinson, D.; Bromet, E. Low Level Lead Exposure and neuropsychological functioning in blue collar males. Int. J. Neurosci. 1987, 36, 29–39. [Google Scholar] [CrossRef]
- Shih, R.A.; Glass, T.A.; Bandeen-Roche, K.; Carlson, M.C.; Bolla, K.I.; Todd, A.C.; Schwartz, B.S. Environmental lead exposure and cognitive function in community-dwelling older adults. Neurology 2006, 67, 1556–1562. [Google Scholar] [CrossRef]
- Shih, R.A.; Hu, H.; Weisskopf, M.G.; Schwartz, B.S. Cumulative lead dose and cognitive function in adults: A review of studies that measured both blood lead and bone lead. Environ. Health Perspect. 2007, 115, 483–492. [Google Scholar] [CrossRef]
- Grashow, R.; Spiro, A.; Taylor, K.M.; Newton, K.; Shrairman, R.; Landau, A.; Sparrow, D.; Hu, H.; Weisskopf, M. Cumulative lead exposure in community-dwelling adults and fine motor function: Comparing standard and novel tasks in the VA Normative Aging Study. NeuroToxicology 2013, 35, 154–161. [Google Scholar] [CrossRef]
- Coetzee, D.J.; McGovern, P.M.; Rao, R.; Harnack, L.J.; Georgieff, M.K.; Stepanov, I. Measuring the impact of manganese exposure on children’s neurodevelopment: Advances and research gaps in biomarker-based approaches. Environ. Health 2016, 15, 91. [Google Scholar] [CrossRef]
- Leonhard, M.J.; Chang, E.T.; Loccisano, A.E.; Garry, M.R. A systematic literature review of epidemiologic studies of developmental manganese exposure and neurodevelopmental outcomes. Toxicology 2019, 420, 46–65. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. 2018, 23, 1655–1679. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines for Europe; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- U.S. EPA. Health Assessment Document for Manganese; Final Report; EPA/600/8-83/013F; Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office: Cincinnati, OH, USA, 1984. [Google Scholar]
- Winder, B.S.; Salmon, A.G.; Marty, M.A. Inhalation of an essential metal: Development of reference exposure levels for manganese. Regul. Toxicol. Pharmacol. 2010, 57, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pellón, A.; Fernández-Olmo, I. Airborne concentration and deposition of trace metals and metalloids in an urban area downwind of a manganese alloy plant. Atmos. Pollut. Res. 2019, 10, 712–721. [Google Scholar] [CrossRef]
- Otero-Pregigueiro, D.; Hernández-Pellón, A.; Borge, R.; Fernández-Olmo, I. Estimation of PM10-bound manganese concentration near a ferromanganese alloy plant by atmospheric dispersion modelling. Sci. Total. Environ. 2018, 627, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Expósito, A.; Markiv, B.; Ruiz-Azcona, L.; Santibáñez, M.; Fernández-Olmo, I. Personal inhalation exposure to manganese and other trace metals in an environmentally exposed population: Bioaccessibility in size-segregated particulate matter samples. Atmos. Pollut. Res. 2021, 12, 101123. [Google Scholar] [CrossRef]
- Fulk, F.; Haynes, E.N.; Hilbert, T.J.; Brown, D.; Petersen, D.; Reponen, T. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 494–502. [Google Scholar] [CrossRef]
- Mbengue, S.; Alleman, L.Y.; Flament, P. Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment. Environ. Geochem. Health 2015, 37, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Kastury, F.; Smith, E.; Karna, R.R.; Scheckel, K.G.; Juhasz, A. Methodological factors influencing inhalation bioaccessibility of metal(loid)s in PM2.5 using simulated lung fluid. Environ. Pollut. 2018, 241, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Weggeberg, H.; Benden, T.F.; Lierhagen, S.; Steinnes, E.; Flaten, T.P. Characterization and bioaccessibility assessment of elements in urban aerosols by extraction with simulated lung fluids. Environ. Chem. Ecotoxicol. 2019, 1, 49–60. [Google Scholar] [CrossRef]
- Ruiz-Azcona, L.; Markiv, B.; Expósito, A.; González-Aramburu, I.; Sierra, M.; Fernández-Olmo, I.; Santibáñez, M. Biomonitoring and bioaccessibility of environmental airborne manganese in relation to motor function in a healthy adult population. NeuroToxicology 2021, 87, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Azcona, L.; Markiv, B.; Expósito, A.; Pozueta, A.; García-Martínez, M.; Fernández-Olmo, I.; Santibáñez, M. Poorer cognitive function and environmental airborne Mn exposure determined by biomonitoring and personal environmental monitors in a healthy adult population. Sci. Total. Environ. 2022, 815, 152940. [Google Scholar] [CrossRef] [PubMed]
- Golden, C.J. STROOP: Test de Colores y Palabras, 3rd ed.; TEA Ediciones, S.A.: Madrid, Spain, 2001. [Google Scholar]
- Wechsler, D. Escala de Inteligencia de Weschler para Adultos III. Manual de Aplicación y Corrección, 2nd ed.; TEA Ediciones: Madrid, Spain, 2001; pp. 149–153. [Google Scholar]
- Ruff, R.; Light, R.; Parker, S.; Levin, H. The psychological construct of word fluency. Brain Lang. 1997, 57, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Partington, J.; Leiter, R. Partington’s pathways test. Psychol. Serv. Cent. Bull. 1949, 1, 9–20. [Google Scholar]
- Reitan, R.M.; Wolfson, D. The Halstead-Reitan neuropsychological test battery. In Theory and Clinical Interpretation, 2nd ed.; Neuropsychology Press: Tucson, AZ, USA, 1993. [Google Scholar]
- Rey, A. Manual Rey: Test de Copia y de Reproducción de Memoria de Figuras Geométricas Complejas, 8th ed.; TEA Ediciones: Madrid, Spain, 2003. [Google Scholar]
- Peña-Casanova, J.; Blesa, R.; Aguilar, M.; Gramunt-Fombuena, N.; Gómez-Ansón, B.; Oliva, R.; Molinuevo, J.L.; Robles, A.; Barquero, M.S.; Antúnez, C.; et al. Spanish Multicenter Normative Studies (NEURONORMA Project): Methods and Sample Characteristics. Arch. Clin. Neuropsychol. 2009, 24, 307–319. [Google Scholar] [CrossRef]
- Lezak, M.D. Neuropsychological Assessment, 4th ed.; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Bornstein, R.A. Normative data on intermanual differences on three tests of motor performance. J. Clin. Exp. Neuropsychol. 1986, 8, 12–20. [Google Scholar] [CrossRef]
- Oteo, J.A.; Benavente, P.; Garzón, M. Securities regulatory force fist in Spanish working age population. Anthropometric influence of variables of the hand and forearm [Valores normativos de la fuerza de puño en la población española en edad laboral. Influencia de las variables antropométricas de la mano y el antebrazo] [Spanish]. Rev. Iberoam. Cir. Mano 2015, 43, 104–110. [Google Scholar] [CrossRef]
- Eastman, R.R.; Jursa, T.P.; Benedetti, C.; Lucchini, R.G.; Smith, D.R. Hair as a biomarker of environmental manganese exposure. Environ. Sci. Technol. 2013, 47, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Markiv, B.; Ruiz-Azcona, L.; Expósito, A.; Santibáñez, M.; Fernández-Olmo, I. Short- and long-term exposure to trace metal(loid)s from the production of ferromanganese alloys by personal sampling and biomarkers. Environ. Geochem. Health 2022, 44, 4595–4618. [Google Scholar] [CrossRef] [PubMed]
- Graney, J.R.; Landis, M.S.; A Norris, G. Concentrations and solubility of metals from indoor and personal exposure PM2.5 samples. Atmos. Environ. 2004, 38, 237–247. [Google Scholar] [CrossRef]
- Pollitt, K.J.G.; Maikawa, C.L.; Wheeler, A.J.; Weichenthal, S.; Dobbin, N.A.; Liu, L.; Goldberg, M.S. Trace metal exposure is associated with increased exhaled nitric oxide in asthmatic children. Environ. Health 2016, 15, 94. [Google Scholar] [CrossRef]
- Lucchini, R.G.; Guazzetti, S.; Zoni, S.; Donna, F.; Peter, S.; Zacco, A.; Salmistraro, M.; Bontempi, E.; Zimmerman, N.J.; Smith, D.R. Tremor, olfactory and motor changes in Italian adolescents exposed to historical ferro-manganese emission. NeuroToxicology 2012, 33, 687–696. [Google Scholar] [CrossRef]
- Haynes, E.N.; Ryan, P.; Chen, A.; Brown, D.; Roda, S.; Kuhnell, P.; Wittberg, D.; Terrell, M.; Reponen, T. Assessment of personal exposure to manganese in children living near a ferromanganese refinery. Sci. Total. Environ. 2012, 427–428, 19–25. [Google Scholar] [CrossRef]
- Solís-Vivanco, R.; Rodríguez-Agudelo, Y.; Riojas-Rodríguez, H.; Ríos, C.; Rosas, I.; Montes, S. Cognitive impairment in an adult Mexican population non-occupationally exposed to manganese. Environ. Toxicol. Pharmacol. 2009, 28, 172–178. [Google Scholar] [CrossRef]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Casjens, S.; Pesch, B.; van Thriel, C.; Zschiesche, W.; Behrens, T.; Weiss, T.; Pallapies, D.; Arendt, M.; Dragano, N.; Moebus, S.; et al. Associations between blood lead, olfaction and fine-motor skills in elderly men: Results from the Heinz Nixdorf Recall Study. NeuroToxicology 2018, 68, 66–72. [Google Scholar] [CrossRef]
- Baker, E.L.; Feldman, R.G.; White, R.F.; Harley, J.P. The role of occupational lead exposure in the genesis of psychiatric and behavioral disturbances. Acta Psychiatr. Scand. 1983, 67, 38–48. [Google Scholar] [CrossRef]
- Hanninen, H.; Aitio, A.; Kovala, T.; Luukkonen, R.; Matikainen, E.; Mannelin, T.; Erkkila, J.; Riihimaki, V. Occupational exposure to lead and neuropsychological dysfunction. Occup. Environ. Med. 1998, 55, 202–209. [Google Scholar] [CrossRef] [PubMed]
- A Maizlish, N.; Parra, G.; Feo, O. Neurobehavioural evaluation of Venezuelan workers exposed to inorganic lead. Occup. Environ. Med. 1995, 52, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.S.; Lee, B.-K.; Lee, G.-S.; Stewart, W.F.; Lee, S.-S.; Hwang, K.-Y.; Ahn, K.-D.; Kim, Y.-B.; Bolla, K.I.; Simon, D.; et al. Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with neurobehavioral test scores in South Korean lead workers. Am. J. Epidemiol. 2001, 153, 453–464. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services; Centers for Disease Control and Prevention. National Center for Environmental Health. Division of Laboratory Sciences. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables; National Center for Environmental Health: Washington, DC, USA, 2019; Volume 1. [Google Scholar]
Matrix | Pb (LOD) | Pb (% < LOD) | Mn (LOD) | Mn (% < LOD) |
---|---|---|---|---|
Blood (µg/L) | 1.48 | 0.8 | 0.74 | 0 |
Scalp hair (ng/g) | 0.85–29.12 | 0 | 3.37–115.86 | 0 |
Fingernails (ng/g) | 2.46–22.49 | 0 | 9.76–89.23 | 0 |
PM10-2.5 bioaccessible (ng/m3) | 5.74 | 97.7 | 0.76 | 1.5 |
PM10-2.5 non-bioaccessible (ng/m3) | 1.84 | 96.9 | 2.52 | 40.8 |
PM2.5 bioaccessible (ng/m3) | 0.42 | 12.3 | 0.59 | 4.6 |
PM2.5 non-bioaccessible (ng/m3) | 0.73 | 53.1 | 0.99 | 6.9 |
Women | Men | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Median | P95 | Mean (SD) | Median | P95 | Mean (SD) | Median | P95 | p Value * | |
Biomarker sampling | ||||||||||
Blood (µg/L) | ||||||||||
Pb (µg/L) | 9.74 (5.52) | 8.49 | 19.52 | 14.53 (9.17) | 11.4 | 40.24 | 11.03 (6.99) | 9.14 | 24.82 | 0.001 |
Mn (µg/L) | 10.04 (3.14) | 9.76 | 15.89 | 9.71 (4.01) | 9.01 | 18.51 | 9.95 (3.38) | 9.58 | 16.01 | 0.375 |
Scalp hair (ng/g) | ||||||||||
Pb (ng/g) | 210.9 (214.6) | 139 | 669.5 | 361.5 (368.7) | 234 | 1387.2 | 246.7 (265.7) | 149.04 | 861.1 | 0.007 |
Mn (ng/g) | 220.5 (205.4) | 168.3 | 721.7 | 366.3 (427.2) | 295.9 | 1550.5 | 255.2 (279.6) | 185.31 | 719 | 0.008 |
Fingernails (ng/g) | ||||||||||
Pb (ng/g) | 127.5 (208.5) | 97.3 | 402 | 128.5 (119.3) | 94.3 | 474.1 | 150.5 (190.8) | 96.04 | 424.8 | 0.866 |
Mn (ng/g) | 967.5 (1097.1) | 562 | 3778 | 844.3 (1203.3) | 532 | 4331 | 936.7 (1120.5) | 555.28 | 3549.2 | 0.337 |
PEM sampling | ||||||||||
PM2.5 (ng/m3) | ||||||||||
Pb bioaccessible PM2.5 (ng/m3) | 13.24 (21.10) | 4.5 | 54.8 | 11.86 (13.71) | 7.4 | 49.38 | 12.87 (19.34) | 5.25 | 50.09 | 0.634 |
Pb non-bioaccessible PM2.5 (ng/m3) | 1.86 (2.80) | 0.37 | 6.05 | 0.90 (1.01) | 0.37 | 3.85 | 1.60 (2.48) | 0.37 | 5.61 | 0.081 |
Pb total PM2.5 (ng/m3) | 15.10 (22.82) | 5.87 | 56.10 | 12.76 (14.06) | 9.1 | 50.65 | 14.47 (20.80) | 6.56 | 51.19 | 0.877 |
Mn bioaccessible PM2.5 (ng/m3) | 70.07 (147.06) | 17.82 | 323.9 | 53.12 (100.09) | 12.85 | 298.6 | 66.31 (135.79) | 17.05 | 315.5 | 0.68 |
Mn non-bioaccessible PM2.5 (ng/m3) | 14.02 (23.27) | 5.73 | 66.41 | 8.91 (9.98) | 6.61 | 33.28 | 12.64 (20.64) | 5.8 | 61.23 | 0.858 |
Mn total PM2.5 (ng/m3) | 84.08 (159.31) | 25.26 | 355.6 | 65.03 (102.57) | 20.02 | 308.1 | 78.95 (146.07) | 25 | 350.6 | 0.937 |
PM10-2.5 (ng/m3) | ||||||||||
Mn bioaccessible PM10-2.5 (ng/m3) | 68.18 (204.49) | 15.17 | 246.8 | 41.92 (72.82) | 10.57 | 301 | 61.11 (178.90) | 13.61 | 249.1 | 0.527 |
Mn non-bioaccessible PM10-2.5 (ng/m3) | 12.73 (43.07) | 3.4 | 42.13 | 9.36 (12.16) | 2.62 | 39.72 | 11.82 (37.33) | 3.39 | 39.73 | 0.862 |
Mn total PM10-2.5 (ng/m3) | 80.91 (246.81) | 16.51 | 287.1 | 51.28 (82.10) | 15.46 | 340.7 | 79.93 (215.26) | 16.47 | 289.2 | 0.723 |
PM10 (ng/m3) | ||||||||||
Mn total PM10 (ng/m3) | 165.00 (376.19) | 42.13 | 608.9 | 116.31 (155.90) | 51.53 | 548.9 | 151.89 (331.66) | 43.87 | 577.2 | 0.927 |
MD * | 95% | CI | p Value | |
---|---|---|---|---|
Biomarkers | ||||
Pb Blood (>9.14 vs. ≤9.14 µg/L) | ||||
Stroop Word | 0.32 | −0.71 | 1.35 | 0.538 |
Stroop Color | 1.00 | 0.02 | 1.99 | 0.046 |
Stroop Color Word | −0.02 | −1.10 | 1.06 | 0.970 |
Pb Scalp hair (>149.04 vs. ≤149.04 ng/g) | ||||
Stroop Word | 0.71 | −0.22 | 1.63 | 0.132 |
Stroop Color | 0.86 | −0.08 | 1.80 | 0.071 |
Stroop Color Word | 0.43 | −0.57 | 1.43 | 0.400 |
Pb Fingernails (96.04> vs. ≤96.04 ng/g) | ||||
Stroop Word | −0.39 | −1.49 | 0.70 | 0.478 |
Stroop Color | −0.53 | −1.59 | 0.52 | 0.317 |
Stroop Color Word | 0.03 | −1.14 | 1.20 | 0.958 |
Mn Blood (>9.58 vs. ≤9.58 µg/L) | ||||
Stroop Word | 0.71 | −0.23 | 1.65 | 0.138 |
Stroop Color | 0.78 | −0.14 | 1.69 | 0.094 |
Stroop Color Word | 0.90 | −0.08 | 1.88 | 0.071 |
Mn Scalp hair (>185.31 vs. ≤185.31 ng/g) | ||||
Stroop Word | −0.47 | −1.42 | 0.48 | 0.330 |
Stroop Color | −0.52 | −1.49 | 0.45 | 0.289 |
Stroop Color Word | −0.32 | −1.35 | 0.70 | 0.533 |
Mn Fingernails (>555.28 vs. ≤555.28 ng/g) | ||||
Stroop Word | −1.19 | −2.30 | −0.09 | 0.034 |
Stroop Color | −1.12 | −2.18 | −0.07 | 0.037 |
Stroop Color Word | −1.33 | −2.48 | −0.17 | 0.025 |
PEM Fine fraction (PM2.5) | ||||
Pb Bioaccessible (5.26+ vs. ≤5.25 ng/m3) | ||||
Stroop Word | 0.06 | −0.92 | 1.05 | 0.900 |
Stroop Color | −0.30 | −1.28 | 0.68 | 0.547 |
Stroop Color Word | −0.20 | −1.25 | 0.85 | 0.702 |
Pb Non-bioaccessible (0.38+ vs. ≤0.37 ng/m3) | ||||
Stroop Word | 0.61 | −0.37 | 1.59 | 0.220 |
Stroop Color | 0.03 | −0.94 | 1.00 | 0.950 |
Stroop Color Word | 0.06 | −0.98 | 1.11 | 0.903 |
Pb Total (Bio + Non-bio) (6.57+ vs. ≤6.56 ng/m3) | ||||
Stroop Word | 0.32 | −0.67 | 1.31 | 0.520 |
Stroop Color | −0.18 | −1.16 | 0.81 | 0.721 |
Stroop Color Word | −0.32 | −1.37 | 0.73 | 0.545 |
Mn Bioaccessible (17.06+ vs. ≤17.05 ng/m3) | ||||
Stroop Word | −0.71 | −1.70 | 0.27 | 0.156 |
Stroop Color | −0.73 | −1.71 | 0.24 | 0.138 |
Stroop Color Word | −1.38 | −2.41 | −0.36 | 0.008 |
Mn Non-bioaccessible (5.81+ vs. ≤5.80 ng/m3) | ||||
Stroop Word | −0.11 | −1.05 | 0.84 | 0.827 |
Stroop Color | −1.19 | −2.11 | −0.27 | 0.011 |
Stroop Color Word | −0.72 | −1.72 | 0.27 | 0.154 |
Mn Total (Bio + Non-bio) (25.01+ vs. ≤25.00 ng/m3) | ||||
Stroop Word | −0.93 | −1.93 | 0.06 | 0.065 |
Stroop Color | −0.75 | −1.74 | 0.23 | 0.132 |
Stroop Color Word | −1.23 | −2.27 | −0.18 | 0.022 |
MD * | 95% | CI | p Value | |
---|---|---|---|---|
Biomarkers | ||||
Pb Blood (>9.14 vs. ≤9.14 µg/L) | ||||
Digit Span Forward | 0.32 | −0.70 | 1.34 | 0.533 |
Digit Span Backward | 0.39 | −0.50 | 1.27 | 0.386 |
Pb Scalp hair (>149.04 vs. ≤149.04 ng/g) | ||||
Digit Span Forward | −0.47 | −1.41 | 0.47 | 0.324 |
Digit Span Backward | 0.48 | −0.36 | 1.31 | 0.259 |
Pb Fingernails (96.04> vs. ≤96.04 ng/g) | ||||
Digit Span Forward | −0.66 | −1.83 | 0.51 | 0.264 |
Digit Span Backward | 0.68 | −0.29 | 1.64 | 0.165 |
Mn Blood (>9.58 vs. ≤9.58 µg/L) | ||||
Digit Span Forward | −0.12 | −1.06 | 0.81 | 0.795 |
Digit Span Backward | 0.34 | −0.48 | 1.16 | 0.410 |
Mn Scalp hair (>185.31 vs. ≤185.31 ng/g) | ||||
Digit Span Forward | −1.12 | −2.06 | −0.18 | 0.020 |
Digit Span Backward | −0.62 | −1.47 | 0.23 | 0.153 |
Mn Fingernails (>555.28 vs. ≤555.28 ng/g) | ||||
Digit Span Forward | −1.62 | −2.77 | −0.47 | 0.006 |
Digit Span Backward | −1.78 | −2.75 | −0.82 | <0.001 |
PEM Fine fraction (PM2.5) | ||||
Pb Bioaccessible (>5.25 vs. ≤5.25 ng/m3) | ||||
Digit Span Forward | −0.62 | −1.60 | 0.36 | 0.213 |
Digit Span Backward | −0.02 | −0.89 | 0.85 | 0.966 |
Pb Non-bioaccessible (>0.37 vs. ≤0.37 ng/m3) | ||||
Digit Span Forward | −0.64 | −1.60 | 0.33 | 0.196 |
Digit Span Backward | 0.03 | −0.83 | 0.89 | 0.942 |
Pb Total (Bio + Non-bio) (>6.56 vs. ≤6.56 ng/m3) | ||||
Digit Span Forward | −0.62 | −1.60 | 0.37 | 0.216 |
Digit Span Backward | 0.18 | −0.70 | 1.05 | 0.691 |
Mn Bioaccessible (>17.05 vs. ≤17.05 ng/m3) | ||||
Digit Span Forward | 0.139 | −0.832 | 1.11 | 0.778 |
Digit Span Backward | −0.156 | −1.013 | 0.701 | 0.719 |
Mn Non-bioaccessible (>5.80 vs. ≤5.80 ng/m3) | ||||
Digit Span Forward | −0.542 | −1.479 | 0.396 | 0.255 |
Digit Span Backward | −0.217 | −1.041 | 0.608 | 0.604 |
Mn Total (Bio + Non-bio) (>25.00 vs. ≤25.00 ng/m3) | ||||
Digit Span Forward | 0.157 | −0.826 | 1.139 | 0.753 |
Digit Span Backward | −0.196 | −1.064 | 0.672 | 0.655 |
MD * | 95% | CI | p Value | |
---|---|---|---|---|
Biomarkers | ||||
Pb Blood (>9.14 vs. ≤9.14 µg/L) | ||||
dom hand | −1.59 | −3.64 | 0.46 | 0.127 |
non-dom hand | −2.68 | −4.85 | −0.51 | 0.016 |
Pb Scalp hair (>149.04 vs. ≤149.04 ng/g) | ||||
dom hand | −0.26 | −2.12 | 1.59 | 0.781 |
non-dom hand | −0.47 | −2.54 | 1.61 | 0.657 |
Pb Fingernails (96.04> vs. ≤96.04 ng/g) | ||||
dom hand | −1.19 | −3.53 | 1.14 | 0.312 |
non-dom hand | −1.30 | −3.61 | 1.01 | 0.267 |
Mn Blood (>9.58 vs. ≤9.58 µg/L) | ||||
dom hand | 0.74 | −1.14 | 2.61 | 0.44 |
non-dom hand | −0.13 | −2.12 | 1.86 | 0.895 |
Mn Scalp hair (>185.31 vs. ≤185.31 ng/g) | ||||
dom hand | 0.44 | −1.46 | 2.33 | 0.651 |
non-dom hand | 0.19 | −1.93 | 2.30 | 0.861 |
Mn Fingernails (>555.28 vs. ≤555.28 ng/g) | ||||
dom hand | −0.62 | −2.96 | 1.73 | 0.603 |
non-dom hand | 0.07 | −2.26 | 2.40 | 0.953 |
PEM Fine fraction (PM2.5) | ||||
Pb Bioaccessible (>5.25 vs. ≤5.25 ng/m3) | ||||
dom hand | 0.02 | −2.01 | 2.05 | 0.986 |
non-dom hand | −0.02 | −2.19 | 2.15 | 0.986 |
Pb Non-bioaccessible (>0.37 vs. ≤0.37 ng/m3) | ||||
dom hand | 0.81 | −1.17 | 2.79 | 0.420 |
non-dom hand | 0.33 | −1.80 | 2.45 | 0.762 |
Pb Total (Bio + Non-bio) (>6.56 vs. ≤6.56 ng/m3) | ||||
dom hand | 0.23 | −1.81 | 2.26 | 0.826 |
non-dom hand | 0.19 | −1.98 | 2.37 | 0.860 |
Mn Bioaccessible (>17.05 vs. ≤17.05 ng/m3) | ||||
dom hand | 0.98 | −1.01 | 2.96 | 0.332 |
non-dom hand | 0.81 | −1.32 | 2.94 | 0.454 |
Mn Non-bioaccessible (>5.80 vs. ≤5.80 ng/m3) | ||||
dom hand | −1.37 | −3.27 | 0.53 | 0.157 |
non-dom hand | −0.13 | −2.18 | 1.93 | 0.902 |
Mn Total (Bio + Non-bio) (>25.00 vs. ≤25.00 ng/m3) | ||||
dom hand | 1.14 | −0.86 | 3.15 | 0.260 |
non-dom hand | 1.30 | −0.85 | 3.44 | 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santibáñez, M.; Ruiz-Azcona, L.; Expósito, A.; Markiv, B.; Fernández-Olmo, I. Comparison of Exposure to Pb and Mn Levels by Using Environmental Personal Monitors and Biomarkers in Relation to Cognitive and Motor Function. Atmosphere 2024, 15, 350. https://doi.org/10.3390/atmos15030350
Santibáñez M, Ruiz-Azcona L, Expósito A, Markiv B, Fernández-Olmo I. Comparison of Exposure to Pb and Mn Levels by Using Environmental Personal Monitors and Biomarkers in Relation to Cognitive and Motor Function. Atmosphere. 2024; 15(3):350. https://doi.org/10.3390/atmos15030350
Chicago/Turabian StyleSantibáñez, Miguel, Laura Ruiz-Azcona, Andrea Expósito, Bohdana Markiv, and Ignacio Fernández-Olmo. 2024. "Comparison of Exposure to Pb and Mn Levels by Using Environmental Personal Monitors and Biomarkers in Relation to Cognitive and Motor Function" Atmosphere 15, no. 3: 350. https://doi.org/10.3390/atmos15030350
APA StyleSantibáñez, M., Ruiz-Azcona, L., Expósito, A., Markiv, B., & Fernández-Olmo, I. (2024). Comparison of Exposure to Pb and Mn Levels by Using Environmental Personal Monitors and Biomarkers in Relation to Cognitive and Motor Function. Atmosphere, 15(3), 350. https://doi.org/10.3390/atmos15030350