Variations in Maximum and Minimum Temperature in Mount Qomolangma during 1971–2020
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. General Characteristics
3.2. Trends Analysis
3.3. Abrupt Diagnosis
4. Discussions and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Zhou, T.J.; Zhang, W.X.; Zhang, L.X.; Clark, R.; Qian, C.; Zhang, Q.H.; Qiu, H.; Jiang, J.; Zhang, X. 2021: A year of unprecedented climate extremes in eastern Asia, north America, and Europe. Adv. Atmos. Sci. 2022, 39, 1598–1607. [Google Scholar] [CrossRef]
- CMA. 2021 China Climate Bulletin. Available online: https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202203/t20220308_4568477.html (accessed on 8 March 2022). (In Chinese)
- CMA. 2022 China Climate Bulletin. Available online: https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202303/t20230324_5396394.html (accessed on 24 March 2023). (In Chinese)
- Kocsis, T.; Kovács-Székely, I.; Anda, A. Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, western Hungary. Theor. Appl. Climatol. 2020, 139, 849–859. [Google Scholar] [CrossRef]
- Karl, T.R.; Kukla, G.; Razuvayev, V.N.; Changery, M.J.; Quayle, R.G.; Heim, R.R., Jr.; Easterling, D.R.; Fu, C.B. Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 1991, 18, 2253–2256. [Google Scholar] [CrossRef]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; James Salinger, M.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef]
- Vose, R.S.; Easterling, D.R.; Gleason, B. Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett. 2005, 32, L23822. [Google Scholar] [CrossRef]
- Navarro-Serrano, F.; López-Moreno, J.I.; Domínguez-Castro, F.; Alonso-González, E.; Azorin-Molina, C.; El-Kenawy, A.; Vicente-Serrano, S.M. Maximum and minimum air temperature lapse rates in the Andean region of Ecuador and Peru. Int. J. Climatol. 2020, 40, 6150–6168. [Google Scholar] [CrossRef]
- Bubathi, V.; Leslie, L.; Speer, M.; Hartigan, J.; Wang, J.; Gupta, A. Impact of Accelerated Climate Change on Maximum Temperature Differences between Western and Coastal Sydney. Climate 2023, 11, 76. [Google Scholar] [CrossRef]
- Curado, L.F.A.; de Paulo, S.R.; de Paulo, I.J.C.; de Oliveira Maionchi, D.; da Silva, H.J.A.; de Oliveira Costa, R.; da Silva, I.M.C.B.; Marques, J.B.; de Souza Lima, A.M.; Rodrigues, T.R. Trends and patterns of daily maximum, minimum and mean temperature in Brazil from 2000 to 2020. Climate 2023, 11, 168. [Google Scholar] [CrossRef]
- Yaya, O.S.; Adesina, O.A.; Olayinka, H.A.; Ogunsola, O.E.; Gil-Alana, L.A. Long memory cointegration in the analysis of maximum, minimum and range temperatures in Africa: Implications for climate change. Atmosphere 2023, 14, 1299. [Google Scholar] [CrossRef]
- Zhai, P.M.; Ren, F.M. On changes of China’s maximum and minimum temperature in the recent 40 years. Acta Meteor. Sin. 1997, 55, 418–429. (In Chinese) [Google Scholar]
- Ma, X.B. The asymmetric change of maximum and minimum temperature in the northwest China. Acta Meteor. Sin. 1999, 57, 613–621. (In Chinese) [Google Scholar]
- Du, J. Asymmetric change of maximum and minimum temperature in Tibetan plateau. J. Appl. Meteor. Sci. 2003, 14, 437–444. (In Chinese) [Google Scholar]
- Wang, L.; Xie, X.Q.; Su, W.; Guo, X.B. Changes of maximum and minimum temperature and their impacts in northern China over the second half of the 20th century. J. Nat. Resour. 2004, 19, 337–343. (In Chinese) [Google Scholar]
- Zhou, W.D.; Sun, G.W.; Dong, G.T.; Liang, P. Changes of minimum temperature in different climatic zones of east China and its relation with atmospheric circulation in winter of recent 60 years. Plateau Meteor. 2010, 29, 680–687. (In Chinese) [Google Scholar]
- Dong, D.H.; Huang, G. Relationship between altitude and variation characteristics of the maximum temperature, minimum temperature, and diurnal temperature range in China. Chin. J. Atmos. Sci. 2015, 39, 1011–1024. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, D.; Yao, T. Uplifting of Tibetan plateau with its environmental effects. Adv. Earth Sci. 2006, 21, 451–458. (In Chinese) [Google Scholar] [CrossRef]
- Lin, S.; Wang, G.X.; Hu, Z.Y.; Huang, K.W.; Sun, X.Y.; Sun, J.Y.; Luo, M.; Xiao, X. Dynamics of evapotranspiration and variations in different land-cover regions over the Tibetan plateau during 1961–2014. J. Hydrometeorol. 2021, 22, 955–969. [Google Scholar] [CrossRef]
- Ma, Y.M.; Hu, Z.Y.; Tian, L.D.; Zhang, F.; Duan, A.M.; Yang, K.; Zhang, Y.L.; Yang, Y.P. Study progresses of the Tibet plateau climate system change and mechanism of its impact on East Asia. Adv. Earth Sci. 2014, 29, 207–215. (In Chinese) [Google Scholar]
- Yao, T.D. TPE international program: A program for coping with major future environmental challenges of the third Pole region. Prog. Geogr. 2014, 33, 884–892. (In Chinese) [Google Scholar]
- Yang, X.C.; Zhang, Y.L.; Zhang, W.; Yan, Y.P.; Wang, Z.F.; Ding, M.J.; Chu, D. Climate Change in Mt. Qomolangma Region in China during the Last 34 Years. Acta Geogr. Sin. 2006, 61, 687–696. (In Chinese) [Google Scholar]
- Li, M.S.; Dai, Y.X.; Ma, Y.M.; Zhong, L.; Lv, S.H. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over Mount Qomolangma region. Plateau Meteor. 2006, 25, 807–813. (In Chinese) [Google Scholar] [CrossRef]
- Du, J.; Lu, H.Y.; Yuan, L.; Jian, J. Spatio-temporal change of extreme temperature events in Mt. Qomolangma region of Tibet from 1971 to 2012. Arid Zone Res. 2016, 33, 20–27. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.J. Variations of extreme temperature in the Mount Qomolangma region in China during 1971–2020. J. Mt. Sci. 2023, 20, 3488–3499. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.L.; Wang, Z.F.; Ding, M.J.; Yang, X.C.; Lin, X.D.; Liu, L.S. Vegetation change in the Mt. Qomolangma Nature Reserve from 1981 to 2001. J. Geogr. Sci. 2007, 17, 152–164. [Google Scholar] [CrossRef]
- Yang, X.H.; Zhuo, G.; Luo, B.; Wang, W. Characteristics of weather and climate change around Mt. Qomolangma. J. Glaciol. Geocryol. 2012, 34, 336–347. (In Chinese) [Google Scholar]
- Ma, F.; Peng, P.H. Spatial-temporal dynamics of alpine grassland coverage and its response to climate warming in Mt. Qomolangma Nature Preserve during 2000–2019. J. Mt. Sci. 2022, 19, 2297–2311. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Gan, T.Y. Hydroclimatic trends and possible climatic warming in the Canadian prairies. Water Resour. Res. 1998, 34, 3009–3015. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, X.L. Long-term trends analysis for temperature in the Jinsha river basin in China. Theor. Appl. Climatol. 2012, 109, 591–603. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, X.L.; Liu, Z.G.; Wang, D.M. Trend analysis of precipitation in the Jinsha river basin in China. J. Hydrometeorol. 2013, 14, 290–303. [Google Scholar] [CrossRef]
- Wang, S.J. Spatiotemporal variability of temperature trends on the southeast Tibetan plateau, China. Int. J. Climatol. 2018, 38, 1953–1963. [Google Scholar] [CrossRef]
- Zhang, X.L.; Wang, S.J. Long-term trend of precipitation days for southeast Tibetan plateau, China. J. Agric. Meteorol. 2020, 76, 111–118. [Google Scholar] [CrossRef]
- Fu, G.B.; Charles, S.P.; Yu, J.J.; Liu, C.M. Decadal climatic variability, trends and future scenarios for the north China plain. J. Clim. 2009, 22, 2111–2123. [Google Scholar] [CrossRef]
- Xu, C.J.; Fan, K.X.; Xiao, T.G. Runoff characteristics and variation tendency of Jinsha river basin. Yangtze River 2010, 41, 10–14. (In Chinese) [Google Scholar]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Sneyers, R. Sur L’Analyse Estatistique des Series D’Observations, WMO Note Technique, No. 143; World Meteorological Organization: Geneva, Switzerland, 1975. (In French) [Google Scholar]
- Qi, W.; Zhang, Y.L.; Gao, J.G.; Yang, X.H.; Liu, L.S.; Narendra, R.K. Climate change on southern slope of Mt. Qomolangma region in Nepal from 1971 to 2009. Acta Geogr. Sin. 2013, 68, 82–94. (In Chinese) [Google Scholar]
- Ye, D.Z. Meteorology of Qinghai-Xizang Plateau; Science Press: Beijing, China, 1979. [Google Scholar]
- Tao, S.Y.; Ding, Y.H. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Am. Meteorol. Soc. 1981, 62, 23–30. [Google Scholar] [CrossRef]
Station | January | February | March | April | May | June | July | August | September | October | November | December | Spring | Summer | Autumn | Winter | Annual | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmax | Nielamu | 16.5 | 17.7 | 17.6 | 19.2 | 20.6 | 21.6 | 22.4 | 21.7 | 19.2 | 18.4 | 18.6 | 18.1 | 20.6 | 22.4 | 19.2 | 18.1 | 22.4 |
Dingri | 14.7 | 15.3 | 18.7 | 20.8 | 23.8 | 25.1 | 25.8 | 23.4 | 22.9 | 20.2 | 17.3 | 14.6 | 23.8 | 25.8 | 22.9 | 15.3 | 25.8 | |
Tmin | Nielamu | −21.7 | −17.8 | −16.8 | −12.0 | −5.5 | −1.3 | 3.9 | 2.8 | −2.3 | −8.9 | −14.8 | −19.0 | −16.8 | −1.3 | −2.3 | −21.7 | −21.7 |
Dingri | −27.7 | −25.3 | −19.0 | −14.3 | −8.4 | −4.0 | 0.7 | −0.6 | −4.4 | −12.3 | −19.0 | −31.4 | −19.0 | −4.0 | −19.0 | −31.4 | −31.4 | |
Range | Nielamu | 38.2 | 35.5 | 34.4 | 31.2 | 26.1 | 22.9 | 18.5 | 18.9 | 21.5 | 27.3 | 33.4 | 37.1 | 37.4 | 23.7 | 21.5 | 39.8 | 44.1 |
Dingri | 42.4 | 40.6 | 37.7 | 35.1 | 32.2 | 29.1 | 25.1 | 24.0 | 27.3 | 32.5 | 36.3 | 46.0 | 42.8 | 29.8 | 41.9 | 46.7 | 57.2 |
1971–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Nielamu | Dingri | Nielamu | Dingri | Nielamu | Dingri | Nielamu | Dingri | Nielamu | Dingri | |
January | 11.7 | 11.3 | 16.3 | 13.5 | 12.2 | 14.0 | 15.7 | 14.7 | 16.5 | 14.7 |
February | 11.3 | 13.9 | 16.4 | 14.6 | 17.7 | 15.0 | 15.7 | 14.0 | 14.4 | 15.3 |
March | 13.4 | 14.7 | 15.2 | 16.7 | 14.3 | 17.4 | 17.6 | 18.7 | 15.9 | 16.9 |
April | 16.4 | 18.7 | 17.8 | 17.9 | 18.0 | 20.8 | 17.1 | 18.6 | 19.2 | 18.5 |
May | 18.8 | 22.0 | 19.9 | 22.1 | 20.6 | 23.5 | 19.4 | 23.8 | 20.0 | 23.0 |
June | 19.9 | 24.0 | 21.6 | 24.6 | 17.5 | 24.9 | 20.3 | 25.1 | 20.8 | 24.8 |
July | 19.9 | 24.5 | 22.4 | 24.8 | 22.1 | 24.1 | 19.2 | 25.8 | 18.3 | 25.2 |
August | 18.1 | 21.5 | 21.7 | 23.4 | 19.2 | 22.5 | 20.3 | 22.7 | 20.4 | 23.3 |
September | 15.9 | 20.6 | 18.9 | 21.6 | 18.1 | 20.5 | 19.2 | 22.8 | 17.8 | 22.9 |
October | 16.2 | 19.1 | 18.4 | 18.4 | 15.8 | 18.0 | 15.9 | 19.3 | 18.1 | 20.2 |
November | 15.3 | 15.8 | 15.0 | 17.2 | 14.4 | 14.3 | 16.1 | 15.2 | 18.6 | 17.3 |
December | 16.5 | 12.4 | 15.1 | 11.9 | 13.7 | 13.4 | 15.9 | 13.0 | 18.1 | 14.6 |
Spring | 18.8 | 22.0 | 19.9 | 22.1 | 20.6 | 23.5 | 19.4 | 23.8 | 20.0 | 23.0 |
Summer | 19.9 | 24.5 | 22.4 | 24.8 | 22.1 | 24.9 | 20.3 | 25.8 | 20.8 | 25.2 |
Autumn | 16.2 | 20.6 | 18.9 | 21.6 | 18.1 | 20.5 | 19.2 | 22.8 | 18.6 | 22.9 |
Winter | 16.5 | 13.9 | 16.4 | 14.6 | 17.7 | 15.0 | 15.9 | 14.7 | 18.1 | 15.3 |
Annual | 19.9 | 24.5 | 22.4 | 24.8 | 22.1 | 24.9 | 20.3 | 25.8 | 20.8 | 25.2 |
1971–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Nielamu | Dingri | Nielamu | Dingri | Nielamu | Dingri | Nielamu | Dingri | Nielamu | Dingri | |
January | −20.6 | −24.4 | −19.1 | −27.7 | −19.1 | −24.1 | −17.1 | −24.5 | −21.7 | −23.1 |
February | −17.3 | −24.8 | −17.0 | −25.3 | −17.8 | −23.5 | −17.1 | −20.8 | −14.4 | −22.9 |
March | −16.8 | −18.8 | −14.3 | −18.2 | −11.9 | −19.0 | −10.9 | −16.7 | −13.4 | −18.5 |
April | −9.7 | −14.3 | −9.5 | −13.3 | −12.0 | −14.0 | −9.2 | −12.2 | −7.8 | −11.6 |
May | −4.7 | −8.4 | −5.3 | −8.3 | −5.3 | −8.0 | −4.0 | −8.0 | −5.5 | −8.2 |
June | −0.8 | −3.0 | −0.5 | −2.8 | −1.3 | −4.0 | 0.5 | −0.4 | 1.5 | −0.4 |
July | 4.5 | 0.7 | 4.4 | 1.4 | 3.9 | 2.8 | 5.3 | 3.2 | 5.1 | 3.4 |
August | 2.8 | −0.6 | 3.0 | 0.4 | 4.3 | 0.2 | 5.2 | 0.3 | 4.4 | 3.0 |
September | −2.3 | −4.4 | −2.2 | −4.1 | −0.4 | −2.5 | 0.5 | −2.9 | 0.1 | −2.7 |
October | −8.9 | −11.9 | −8.3 | −11.9 | −8.6 | −12.3 | −6.8 | −11.6 | −8.3 | −11.5 |
November | −14.8 | −17.4 | −11.6 | −19.0 | −10.5 | −17.1 | −9.3 | −16.4 | −9.5 | −15.7 |
December | −19.0 | −22.5 | −18.2 | −27.5 | −14.1 | −26.5 | −11.6 | −20.5 | −13.7 | −31.4 |
Spring | −16.8 | −18.8 | −14.3 | −18.2 | −12.0 | −19.0 | −10.9 | −16.7 | −13.4 | −18.5 |
Summer | −0.8 | −3.0 | −0.5 | −2.8 | −1.3 | −4.0 | 0.5 | −0.4 | 1.5 | −0.4 |
Autumn | −2.3 | −17.4 | −2.2 | −19.0 | −0.4 | −17.1 | 0.5 | −16.4 | 0.1 | −15.7 |
Winter | −20.6 | −24.8 | −19.1 | −27.7 | −19.1 | −26.5 | −17.1 | −24.5 | −21.7 | −31.4 |
Annual | −20.6 | −24.8 | −19.1 | −27.7 | −19.1 | −26.5 | −17.1 | −24.5 | −21.7 | −31.4 |
Tmax | Tmin | |||||||
---|---|---|---|---|---|---|---|---|
Z | β (°C/Year) | Z | β (°C/Year) | |||||
Nielamu | Dingri | Nielamu | Dingri | Nielamu | Dingri | Nielamu | Dingri | |
January | 1.63 | 1.91 | 0.050 | 0.044 | 0.45 | 1.72 | 0.009 | 0.024 |
February | 1.92 | 1.03 | 0.056 | 0.020 | 2.01 * | 2.63 ** | 0.047 | 0.055 |
March | 2.51 * | 2.09 * | 0.057 | 0.042 | 1.47 | 3.40 ** | 0.033 | 0.056 |
April | 0.12 | 0.81 | 0.000 | 0.012 | 2.58 ** | 3.06 ** | 0.056 | 0.045 |
May | 0.68 | 0.67 | 0.016 | 0.014 | 0.05 | 0.65 | 0.000 | 0.011 |
June | 0.45 | 1.73 | 0.005 | 0.016 | 2.20 * | 2.79 ** | 0.031 | 0.040 |
July | 0.46 | 2.38 * | 0.005 | 0.030 | 4.74 ** | 4.02 ** | 0.038 | 0.044 |
August | 2.70 ** | 2.64 ** | 0.029 | 0.029 | 3.43 ** | 2.63 ** | 0.041 | 0.045 |
September | 3.10 ** | 3.12 ** | 0.030 | 0.038 | 2.51 * | 2.00 * | 0.043 | 0.025 |
October | 0.23 | 3.15 ** | 0.003 | 0.039 | 1.56 | 1.06 | 0.021 | 0.013 |
November | 1.55 | 1.61 | 0.033 | 0.034 | 3.01 ** | 3.11 ** | 0.058 | 0.047 |
December | 2.33 * | 2.90 ** | 0.056 | 0.063 | 1.09 | 2.10 * | 0.021 | 0.035 |
Spring | 1.77 | 0.67 | 0.032 | 0.014 | 1.7 | 3.40 ** | 0.034 | 0.056 |
Summer | 1.17 | 2.36 * | 0.017 | 0.023 | 2.24 * | 3.18 ** | 0.032 | 0.039 |
Autumn | 2.50 * | 3.12 ** | 0.023 | 0.038 | 2.51 * | 3.11 ** | 0.043 | 0.047 |
Winter | 2.30 * | 3.06 ** | 0.063 | 0.067 | 1.79 | 1.75 | 0.048 | 0.024 |
Annual | 1.44 | 2.36 * | 0.022 | 0.025 | 2.54 * | 1.75 | 0.065 | 0.024 |
Station | January | February | March | April | May | June | July | August | September | October | November | December | Spring | Summer | Autumn | Winter | Annual | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmax | Nielamu | 1998 | 2013 | 2004 | 2016 | 1982 | 1981 | 1982 | 1982 | 1978 | 1998 | 2004 | 1999 | 1986 | 1980 | 1979 | 2002 | 1980 |
Dingri | 1988 | 1997 | 1982 | 1988 | 1987 | 1989 | 2000 | 1982 | 2013 | 2001 | 2000 | 1998 | 1987 | 1982 | 2013 | 1992 | 1982 | |
Tmin | Nielamu | 1980 | 2001 | 1980 | 2003 | 1987 | 1988 | 1986 | 1977 | 1990 | 1994 | 1996 | 1995 | 1981 | 1986 | 1990 | 1997 | 1997 |
Dingri | 2000 | 1988 | 1999 | 2003 | 2000 | 1993 | 1994 | 2002 | 1997 | 1993 | 1997 | 1998 | 1999 | 1997 | 1997 | 1998 | 1998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S. Variations in Maximum and Minimum Temperature in Mount Qomolangma during 1971–2020. Atmosphere 2024, 15, 358. https://doi.org/10.3390/atmos15030358
Wang S. Variations in Maximum and Minimum Temperature in Mount Qomolangma during 1971–2020. Atmosphere. 2024; 15(3):358. https://doi.org/10.3390/atmos15030358
Chicago/Turabian StyleWang, Shunjiu. 2024. "Variations in Maximum and Minimum Temperature in Mount Qomolangma during 1971–2020" Atmosphere 15, no. 3: 358. https://doi.org/10.3390/atmos15030358
APA StyleWang, S. (2024). Variations in Maximum and Minimum Temperature in Mount Qomolangma during 1971–2020. Atmosphere, 15(3), 358. https://doi.org/10.3390/atmos15030358