Carbon Fluxes from Soils of “Ladoga” Carbon Monitoring Site Leningrad Region, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Strategy of Measurements
2.3. Ecosystem Carbon Flux Measurement
2.4. Policy Recommendation
- Implement strict regulations and monitoring systems to prevent illegal logging and ensure sustainable forest management practices.
- Invest in research and technology to improve forest inventory methods, such as remote sensing of forest inventories, to accurately estimate the amount, distribution, and uncertainty of carbon sequestration in the boreal forest.
- Promote afforestation and reforestation projects in degraded areas of the boreal forest to increase carbon sequestration capacity.
- Encourage the conservation and restoration of peatlands in the boreal forest, as they are significant carbon sinks.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodnebrog, Ø.; Aamaas, B.; Fuglestvedt, J.S.; Marston, G.; Myhre, G.; Nielsen, C.J.; Sandstad, M.; Shine, K.P.; Wallington, T.J. Updated Global Warming Potentials and Radiative Efficiencies of Halocarbons and other Weak Atmospheric Absorbers. Rev. Geophys. 2020, 58, e2019RG000691. [Google Scholar] [CrossRef] [PubMed]
- WMO. WMO Greenhouse Gas Bulletin; WMO: Geneva, Switzerland, 2021; p. 10. [Google Scholar]
- Sun, Y.; Yin, H.; Cheng, Y.; Zhang, Q.; Zheng, B.; Notholt, J.; Lu, X.; Liu, C.; Tian, Y.; Liu, J. Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan Plateau. Atmos. Chem. Phys. 2021, 21, 9201–9222. [Google Scholar] [CrossRef]
- National Action Plan of the First Phase of Adaptation to Climate Change for the Period Until 2022. Available online: http://static.government.ru/media/files/OTrFMr1Z1sORh5NIx4gLUsdgGHyWIAqy.pdf (accessed on 1 February 2024).
- Bradshaw, C.J.A.; Warkentin, I.G.; Sodhi, N.S. Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol. Evol. 2009, 24, 541–548. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Kattsov, V.M. Report on Climate Risks on the Territory of the Russian Federation. Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet); Climate Center of Roshydromet: St. Petersburg, FL, USA, 2017; Available online: http://cc.voeikovmgo.ru/images/dokumenty/2017/riski.pdf (accessed on 1 February 2024).
- Roshydromet. Report on Climate Peculiarities on the Territory of the Russian Federation for 2022; Roshydromet: Moscow, Russia, 2022; p. 109. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 2021; p. 2391. [Google Scholar]
- Wang, H.; Yu, L.; Chen, L.; Zhang, Z.; Li, X.; Liang, N.; Peng, C.; He, J.-S. Carbon fluxes and soil carbon dynamics along a gradient of biogeomorphic succession in alpine wetlands of Tibetan Plateau. Fundam. Res. 2023, 3, 151–159. [Google Scholar] [CrossRef]
- Sanborn, P.; Lamontagne, L.; Hendershot, W. Podzolic soils of Canada: Genesis, distribution, and classification. Can. J. Soil Sci. 2011, 91, 843–880. [Google Scholar] [CrossRef]
- Häkkinen, M.; Heikkinen, J.; Mäkipää, R. Soil carbon stock increases in the organic layer of boreal middle-aged stands. Biogeosciences 2011, 8, 1279–1289. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Delcourt, C.J.F.; Kukavskaya, E.; Mack, M.; Walker, X.; Hessilt, T.; Rogers, B.; Scholten, R.C. Direct and longer-term carbon emissions from arctic-boreal fires: A short review of recent advances. Curr. Opin. Environ. Sci. Health 2021, 23, 100277. [Google Scholar] [CrossRef]
- Abakumov, E.; Polyakov, V. Carbon Polygons and Carbon Offsets: Current State, Key Challenges and Pedological Aspects. Agronomy 2021, 11, 2013. [Google Scholar] [CrossRef]
- Ivanov, A.L.; Savin, I.Y.; Stolbovoy, V.S.; Dukhanin, Y.A.; Kozlov, D.N. Methodological approaches to the formation of a unified national system of monitoring and accounting of carbon balance and greenhouse gas emissions on lands of the agricultural fund of the Russian Federation. Dokuchaev Soil Bull. 2021, 108, 175–218. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Polyakov, V.I.; Chukov, S.N. Approaches and Methods for Studying Soil Organic Matter in the Carbon Polygons of Russia (Review). Eurasian Soil Sci. 2022, 55, 849–860. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems–A Scoping Analysis for the LEAP Work Stream on Soil Carbon Stock Changes; FAO: Rome, Italy, 2019; p. 84. [Google Scholar]
- Lyuri, D.I.; Nekrich, A.S.; Karelin, D.V. Cropland dynamics in Russia in 1990–2015 and soil emission of carbon dioxide. Vestn. Mosk. Univ. Seriya 5 Geogr. 2018, 3, 70–76. [Google Scholar]
- Kalinina, O.; Cherkinsky, A.; Chertov, O.; Goryachkin, S.; Kurganova, I.; Lopes de Gerenyu, V.; Lyuri, D.; Kuzyakov, Y.; Giani, L. Post-agricultural restoration: Implications for dynamics of soil organic matter pools. CATENA 2019, 181, 104096. [Google Scholar] [CrossRef]
- Bobrenko, I.; Goman, N.; Nezhevlyak, O.; Bobrenko, E.; Kormin, V. Investigation of the intensity of carbon dioxide emissions by steppe soil when introducing fallow lands into circulation. E3S Web Conf. 2023, 413, 01004. [Google Scholar] [CrossRef]
- Upadhyay, S.; Raghubanshi, A.S. Chapter 16—Determinants of soil carbon dynamics in urban ecosystems. In Urban Ecology; Verma, P., Singh, P., Singh, R., Raghubanshi, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 299–314. [Google Scholar]
- Tong, S.; Soskolne, C.L. Global Environmental Change and Population Health: Progress and Challenges. EcoHealth 2007, 4, 352–362. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Gagarina, E.I.; Matinyan, N.N.; Schastnaya, L.S.; Kasatkina, G.A. Soils and Soil Cover in Northwest Russia; Saint-Petersburg State University: Saint-Petersburg, Russia, 1995. [Google Scholar]
- WRB. IUSS Working Group WRB World Reference Base for Soil Resources 2014, Update 2015; WRB: Rome, Italy, 2015; p. 195. [Google Scholar]
- Li-Core. Soil Gas Flux Measurement Theory. Available online: https://www.licor.com/env/support/Smart-Chamber/topics/the-measurement-cycle.html#Soilgasfluxmeasurementtheory (accessed on 15 February 2024).
- Liu, L.; Estiarte, M.; Peñuelas, J. Soil moisture as the key factor of atmospheric CH4 uptake in forest soils under environmental change. Geoderma 2019, 355, 113920. [Google Scholar] [CrossRef]
- Barrena, I.; Menéndez, S.; Duñabeitia, M.; Merino, P.; Florian Stange, C.; Spott, O.; González-Murua, C.; Estavillo, J.M. Greenhouse gas fluxes (CO2, N2O and CH4) from forest soils in the Basque Country: Comparison of different tree species and growth stages. For. Ecol. Manag. 2013, 310, 600–611. [Google Scholar] [CrossRef]
- Kudeyarov, V.N. Soil respiration and carbon sequestration. Eurasian Soil Sci. 2023, 9, 1011–1022. [Google Scholar]
- Iqbal, J.; Ronggui, H.; Lijun, D.; Lan, L.; Shan, L.; Tao, C.; Leilei, R. Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biol. Biochem. 2008, 40, 2324–2333. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, P.; Lu, P.; Wang, Y.-S.; Lin, Y.-B.; Rao, X.-Q. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agric. Ecosyst. Environ. 2008, 124, 125–135. [Google Scholar] [CrossRef]
- Yi, Z.; Fu, S.; Yi, W.; Zhou, G.; Mo, J.; Zhang, D.; Ding, M.; Wang, X.; Zhou, L. Partitioning soil respiration of subtropical forests with different successional stages in south China. For. Ecol. Manag. 2007, 243, 178–186. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E.; Nizamutdinov, T.; Shevchenko, E.; Makarova, M. Estimation of Carbon Stocks and Stabilization Rates of Organic Matter in Soils of the «Ladoga» Carbon Monitoring Site. Agronomy 2023, 13, 807. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Janssens, I.A.; Carrara, A.; Ceulemans, R. Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob. Change Biol. 2004, 10, 161–169. [Google Scholar] [CrossRef]
- Lou, Y.; Li, Z.; Zhang, T.; Liang, Y. CO2 emissions from subtropical arable soils of China. Soil Biol. Biochem. 2004, 36, 1835–1842. [Google Scholar] [CrossRef]
- Sushko, S.V.; Ananyeva, N.D.; Ivashchenko, K.V.; Kudeyarov, V.N. Soil CO2 Emission, Microbial Biomass, and Basal Respiration of Chernozems under Different Land Uses. Eurasian Soil Sci. 2019, 52, 1091–1100. [Google Scholar] [CrossRef]
- Buyanovsky, G.A.; Wagner, G.H. Soil respiration and carbon dynamics in parallel native and cultivated ecosystems. Adv. Soil Sci. 1995, 16, 209–219. [Google Scholar]
- Hui, D.; Luo, Y. Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Adolfo Campos, C. Response of soil surface CO2–C flux to land use changes in a tropical cloud forest (Mexico). For. Ecol. Manag. 2006, 234, 305–312. [Google Scholar] [CrossRef]
- Hicks Pries, C.E.; Castanha, C.; Porras, R.C.; Torn, M.S. The whole-soil carbon flux in response to warming. Science 2017, 355, 1420–1423. [Google Scholar] [CrossRef] [PubMed]
- Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 2002, 116, S107–S118. [Google Scholar] [CrossRef]
- Wanyama, I.; Pelster, D.E.; Butterbach-Bahl, K.; Verchot, L.V.; Martius, C.; Rufino, M.C. Soil carbon dioxide and methane fluxes from forests and other land use types in an African tropical montane region. Biogeochemistry 2019, 143, 171–190. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Jacobs, S.; Merbold, L.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Conversion of natural forest results in a significant degradation of soil hydraulic properties in the highlands of Kenya. Soil Tillage Res. 2018, 176, 36–44. [Google Scholar] [CrossRef]
- Gitarskiy, M.L.; Zamolodchikov, D.G.; Mukhin, V.A.; Diyarova, D.K.; Grabar, V.A.; Karelin, D.V.; Ivaschenko, A.I.; Marunich, A.S. Seasonal variations in carbon dioxide emissions during the fallen spruce trees decomposition in Southern Taiga. Russ. J. For. Sci. 2020, 3, 239–249. [Google Scholar]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Savin, I.Y.; Shorohova, E.V. Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate. Contemp. Probl. Ecol. 2017, 10, 748–760. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Kudeyarov, V.N. CO2 emission from soils of various ecosystems of the Southern Taiga Zone: Data analysis of continuous 12-year monitoring. Dokl. Biol. Sci. 2011, 436, 56–58. [Google Scholar] [CrossRef]
- Guo, R.; Shao, G.; Wu, W.; Lin, R.; Peng, K.; Huang, X. Analyzing carbon source-sink nexus for green and sustainable transition at the local scale. Water-Energy Nexus 2023, 6, 6–12. [Google Scholar] [CrossRef]
№ | The Description of Monitoring Plot | Plant Communities | Soil Name * |
---|---|---|---|
1 | Former agricultural land. Flat relief. Densely covered with forest litter. Vegetation is represented by shrubs, young trees. | Cereal birch | Plaggic Stagnic Podzol (arenic) on water-glacial sediments |
2 | Former agricultural land. Flat relief. Herbaceous cover, single trees present. | Fallow fern-ruderal-grass meadow | Plaggic Stagnic Podzol (arenic) on water-glacial sediments |
3 | Former agricultural land. Flat relief. Densely covered with forest litter. | Fallow fern-ruderal-grass meadow | Plaggic Gleyic Podzol (arenic) on water-glacial sediments |
4 | Land which are not used for agriculture. Esker slope. Represented by young trees, shrubs. | Birch-pine forest | Post-pyrogenic Umbrisol (arenic) on water-glacial sediments |
5 | Wetland. Depression of relief. Grass cover, individual trees. | Lowland moist-grass swamp | Folic Histosol on water-glacial sediments |
6 | Former agricultural land. Flat relief. Densely covered with forest litter. | Fallow fern-ruderal-grass meadow | Plaggic Stagnic Podzol (arenic) on water-glacial sediments |
7 | Land which are not used for agriculture. Top of the esker upland. Vegetation is represented by shrubs, young trees. | Birch-pine forest | Entic Stagnic Podzol on water-glacial sediments |
8 | Wetland. Depression of relief. Grass cover, individual trees. | Lowland moist-grass swamp | Folic Histosol on water-glacial sediments |
№ | Duration of the Period Used to Calculate FCH4 and FCO2, s (Gas Analyzer Counts: Start and End of Measurements, s) | FCH4, CH4 g/(m2*Year); FCH4-C, CH4-C g/(m2*Year) | FCO2, CO2 g/(m2*Year); FCO2-C, CO2-C g/(m2*Year) |
---|---|---|---|
1 | 170 (70–240 s) | −0.61; −0.45 | 2090; 570 |
120 (350–470 s) | −0.63; −0.47 | 1540; 420 | |
2 | 180 (1420–1600 s) | −0.33; −0.25 | 1620; 440 |
3 | 180 (2100–2280 s) | −1.36; −1.02 | 2500; 690 |
160 (2430–2590 s) | −1.69; −1.27 | 2870; 780 | |
4 | 120 (2880–3000 s) | −1.26; −0.95 | 2160; 590 |
180 (3220–3400 s) | −1.45; −1.08 | 1810; 490 | |
5 | 120 (3900–4020 s) | 0.53; 0.40 | 640; 170 |
150 (4250–4400 s) | 0.05; 0.04 | 860; 230 | |
6 | 110 (4760–4870 s) | −0.89; −0.67 | 1510; 410 |
150 (4950–5100 s) | −1.01; −0.75 | 1310; 360 | |
7 | 140 (5510–5650 s) | −1.33; −0.99 | 4160; 1130 |
8 | 150 (6250–6400 s) | 0.83; 0.62 | 680; 180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abakumov, E.; Makarova, M.; Paramonova, N.; Ivakhov, V.; Nizamutdinov, T.; Polyakov, V. Carbon Fluxes from Soils of “Ladoga” Carbon Monitoring Site Leningrad Region, Russia. Atmosphere 2024, 15, 360. https://doi.org/10.3390/atmos15030360
Abakumov E, Makarova M, Paramonova N, Ivakhov V, Nizamutdinov T, Polyakov V. Carbon Fluxes from Soils of “Ladoga” Carbon Monitoring Site Leningrad Region, Russia. Atmosphere. 2024; 15(3):360. https://doi.org/10.3390/atmos15030360
Chicago/Turabian StyleAbakumov, Evgeny, Maria Makarova, Nina Paramonova, Viktor Ivakhov, Timur Nizamutdinov, and Vyacheslav Polyakov. 2024. "Carbon Fluxes from Soils of “Ladoga” Carbon Monitoring Site Leningrad Region, Russia" Atmosphere 15, no. 3: 360. https://doi.org/10.3390/atmos15030360
APA StyleAbakumov, E., Makarova, M., Paramonova, N., Ivakhov, V., Nizamutdinov, T., & Polyakov, V. (2024). Carbon Fluxes from Soils of “Ladoga” Carbon Monitoring Site Leningrad Region, Russia. Atmosphere, 15(3), 360. https://doi.org/10.3390/atmos15030360