Mechanisms and Applications of Nature-Based Solutions for Stormwater Control in the Context of Climate Change: A Review
Abstract
:1. Introduction
2. Methods
- Context delineates the specific environmental or situational backdrop of the study;
- Intervention denotes the specific NbS or practice under examination;
- Mechanism investigates the causative linkages between the intervention and its ensuing effects;
- Outcome encapsulates the resultant effects or consequences engendered by the intervention, as driven by the identified mechanism [30].
3. Review Results and Discussion
3.1. Literature Search Results
3.2. Overview of Nature-Based Solutions
3.2.1. Historical Trajectory of Nature-Based Solutions
3.2.2. Intervention of Nature-Based Solution Implementations
3.2.3. Mechanistic Underpinnings of NbSs for Stormwater and Contaminant Regulation
4. Leveraging NbS Techniques for Urban Stormwater Management
4.1. Green Roofs (GRs)
4.1.1. Efficacy in Stormwater Runoff Retention
Country | Green Roof Information | Site Characteristics | Runoff/Outflow Reduction (%) | Peak Flow Reduction (%) | Other/Notes | Reference |
---|---|---|---|---|---|---|
China | 100 cm long × 100 cm wide × 40 cm high Substrates (10 cm in depth) | The mean annual precipitation is 587 mm | 81.00–87.00 | 83.00–87.00 | Natural rainfall events | Zhang et al. [48] |
China | Mainly refers to the national standard for the technical specifications of green roof construction | Study areas under 2.70 hectares | 31.40–69.80 | 19.80–65.20 | In the 5-year period rainfall events | Yao et al. [55] |
Italy | N/A | Residential area, imperviousness of 96.0% | 25.90–62.80 | 31.40–83.80 | The rainfall duration was assumed 30 min and the time-to-peak ratio 0.4 | Palermo et al. [56] |
China | Four types of vegetation cover (Portulaca grandiflora, Sedum lineare, Festuca elata, and bare substrate) | Subhumid continental monsoon climate in north temperate zone | 41.70–54.20 | 50.60–59.10 | The heaviest rainfall event during the observation period (81.4 mm) | Ge and Zhang [57] |
Greece | Substrate depth is 8 cm or 16 cm while plant species is Sedum or origanum or no vegetation | N/A | 22.80–62.00 | 56.90–79.10 | The duration of the studied rainfall events ranged between 50 min and 2640 min | Soulis et al. [58] |
England | The test bed (3 × 1 m) comprised a sedum vegetation layer growing in 80 mm of substrate | Located in typical extensive green roof build-up | 0.04–99.95 | 19.81–99.93 | Rain depth (mm) between 8.80 mm and 99.6 mm | Stovin et al. [59] |
4.1.2. Efficacy in Augmenting Stormwater Quality
4.2. Permeable Pavement Systems (PPSs)
4.2.1. Efficacy in Stormwater Runoff Retention
4.2.2. Efficacy in Augmenting Stormwater Quality
4.3. Bioretention Systems (BRs)
4.3.1. Efficacy in Stormwater Runoff Retention
4.3.2. Efficacy in Augmenting Stormwater Quality
4.4. Constructed Wetlands (CWs)
4.4.1. Efficacy in Stormwater Runoff Retention
4.4.2. Efficacy in Augmenting Stormwater Quality
4.5. Combination NbS Practices
5. Barriers and Strategies for NbS Implementation
5.1. Barriers and Challenges
5.1.1. Financial Constraints
5.1.2. Technical and Physical Limitations
5.1.3. Regulatory Barriers
5.1.4. Public Awareness Challenges
5.2. Future Directions for Improving and Strategizing NbS Implementation
5.2.1. Financial Strategy Enhancement
5.2.2. Theoretical Framework Development
5.2.3. Legislative and Regulatory Advancements
5.2.4. Public Advocacy and Awareness
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Do, T.A.T.; Do, A.N.T.; Tran, H.D. Quantifying the spatial pattern of urban expansion trends in the period 1987–2022 and identifying areas at risk of flooding due to the impact of urbanization in Lao Cai city. Ecol. Inform. 2022, 72, 101912. [Google Scholar] [CrossRef]
- Lin, L.; Gao, T.; Luo, M.; Ge, E.; Yang, Y.; Liu, Z.; Zhao, Y.; Ning, G. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China. Sci. Total Environ. 2020, 744, 140264. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zou, L.; Xia, J.; Chen, T.; Wang, F. Impact assessment of climate change and urbanization on the nonstationarity of extreme precipitation: A case study in an urban agglomeration in the middle reaches of the Yangtze river. Sustain. Cities Soc. 2022, 85, 104038. [Google Scholar] [CrossRef]
- Shahid, M.; Cong, Z.; Zhang, D. Understanding the impacts of climate change and human activities on streamflow: A case study of the Soan River basin, Pakistan. Theor. Appl. Climatol. 2018, 134. [Google Scholar] [CrossRef]
- Chen, J.; Theller, L.; Gitau, M.W.; Engel, B.A.; Harbor, J.M. Urbanization impacts on surface runoff of the contiguous United States. J. Environ. Manag. 2017, 187, 470–481. [Google Scholar] [CrossRef]
- Dissanayake, D. Land Use Change and Its Impacts on Land Surface Temperature in Galle City, Sri Lanka. Climate 2020, 8, 65. [Google Scholar] [CrossRef]
- Xihui, G.; Zhang, Q.; Singh, V.; Changqing, S.; Peng, S.; Li, J. Potential contributions of climate change and urbanization to precipitation trends across China at national, regional and local scales. Int. J. Climatol. 2019, 39, 2998–3012. [Google Scholar] [CrossRef]
- Seyoum, M.; Gan, T.Y. Possible impact of climate change on future extreme precipitation of the Oldman, Bow and Red Deer River Basins of Alberta. Int. J. Climatol. 2015, 36, 208–224. [Google Scholar] [CrossRef]
- Shahid, M.; Rahman, K. Identifying the Annual and Seasonal Trends of Hydrological and Climatic Variables in the Indus Basin Pakistan. Asia-Pac. J. Atmos. Sci. 2020, 57, 191–205. [Google Scholar] [CrossRef]
- Cong, Z.; Shahid, M.; Zhang, D.; Lei, H.; Yang, D. Attribution of runoff change in the alpine basin: A case study of the Heihe Upstream Basin, China. Hydrol. Sci. J. 2017, 62, 1013–1028. [Google Scholar] [CrossRef]
- Feng, X.; Vico, G.; Porporato, A. On the effects of seasonality on soil water balance and plant growth. Water Resour. Res. 2012, 48, W05543. [Google Scholar] [CrossRef]
- Tao, W.; Bays, J.; Meyer, D.; Smardon, R.; Levy, Z.F. Constructed Wetlands for Treatment of Combined Sewer Overflow in the US: A Review of Design Challenges and Application Status. Water 2014, 2014, 3362–3385. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Peng, C. Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecol. Model. 2014, 291, 6–14. [Google Scholar] [CrossRef]
- Davis, A. Green Engineering Principles Promote Low-Impact Development. Environ. Sci. Technol. 2005, 39, 338A–344A. [Google Scholar] [CrossRef]
- Ren, N.-Q.; Wang, Q.; Wang, Q.; Huang, H.; Wang, X.-H. Upgrading to urban water system 3.0 through sponge city construction. Front. Environ. Sci. Eng. 2017, 11, 9. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Bowler, D.; Buyung, A.; Knight, T.; Pullin, A. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Li, C.; Peng, C.; Chiang, P.-C.; Cai, Y.; Wang, X.; Yang, Z. Mechanisms and applications of green infrastructure practices for stormwater control: A review. J. Hydrol. 2019, 568, 626–637. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Davis, A.; Liu, Y. Dissolved Inorganic Nitrogen Behavior and Fate in Bioretention Systems: Role of Vegetation and Saturated Zones. J. Environ. Eng. 2019, 145, 04019074. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, L.; Du, Y.; Chen, G. Current patterns and future perspectives of best management practices research: A bibliometric analysis. J. Soil Water Conserv. 2016, 71, 98A–104A. [Google Scholar] [CrossRef]
- Liu, Y.; Bralts, V.; Engel, B. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Sci. Total Environ. 2015, 511, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, M.; Newman, G.; Van Zandt, S. The Projected Impact of a Neighborhood-Scaled Green-Infrastructure Retrofit. Sustainability 2018, 10, 3665. [Google Scholar] [CrossRef] [PubMed]
- Versini, P.A.; Kotelnikova, N.; Poulhes, A.; Tchiguirinskaia, I.; Schertzer, D.; Leurent, F. A distributed modelling approach to assess the use of Blue and Green Infrastructures to fulfil stormwater management requirements. Landsc. Urban Plan. 2018, 173, 60–63. [Google Scholar] [CrossRef]
- Miller, J.D.; Vesuviano, G.; Wallbank, J.R.; Fletcher, D.H.; Jones, L. Hydrological assessment of urban Nature-Based Solutions for urban planning using Ecosystem Service toolkit applications. Landsc. Urban Plan. 2023, 234, 104737. [Google Scholar] [CrossRef]
- Liu, T.; Lawluvy, Y.; Shi, Y.; Yap, P.S. Low Impact Development (LID) Practices: A Review on Recent Developments, Challenges and Prospects. Water Air Soil Pollut. 2021, 232, 344. [Google Scholar] [CrossRef]
- Brown, H.; Bos, D.; Walsh, C.J.; Fletcher, T.; RossRakesh, S. More than money: How multiple factors influence householder participation in at-source stormwater management. J. Environ. Plan. Manag. 2014, 59, 79–97. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Retrofitting the Low Impact Development Practices into Developed Urban areas Including Barriers and Potential Solution. Open Geosci. 2017, 9, 240–254. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Colicchia, C.; Strozzi, F. Supply chain risk management: A new methodology for a systematic literature review. Supply Chain. Manag. Int. J. 2012, 17, 403–418. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M. Linking hydrological and bioecological benefits of green infrastructures across spatial scales—A literature review. Sci. Total Environ. 2018, 648, 1219–1231. [Google Scholar] [CrossRef]
- Olawumi, T.; Chan, D.D. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Thomé, A.M.; Ceryno, P.; Scavarda, A.; Remmen, A. Sustainable infrastructure: A review and a research agenda. J. Environ. Manag. 2016, 184, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Baggethun, E.; de Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Vogel, J.; Moore, T.; Coffman, R.; Rodie, S.; Hutchinson, S.; McDonough, K.; McLemore, A.; McMaine, J. Critical Review of Technical Questions Facing Low Impact Development and Green Infrastructure: A Perspective from the Great Plains. Water Environ. Res. 2015, 87, 849–862. [Google Scholar] [CrossRef]
- Mwangi, J.; Shisanya, C.; Gathenya, J.; Namirembe, S.; Moriasi, D. A modeling approach to evaluate the impact of conservation practices on water and sediment yield in Sasumua Watershed, Kenya. J. Soil Water Conserv. 2015, 70, 75–90. [Google Scholar] [CrossRef]
- Roseen, R.; Janeski, T.; Simpson, M.; Houle, J.; Gunderson, J.; Ballestero, T. Economic and Adaptation Benefits of Low Impact Development. In Proceedings of the 2011 Low Impact Development Conference, Philadelphia, PA, USA, 25–28 September 2011. [Google Scholar]
- Xu, Z.; Dong, X.; Zhao, Y.; Du, P. Enhancing resilience of urban stormwater systems: Cost-effectiveness analysis of structural characteristics. Urban Water J. 2021, 18, 850–859. [Google Scholar] [CrossRef]
- Addo-Bankas, O.; Zhao, Y.; Gomes, A.; Stefanakis, A. Challenges of Urban Artificial Landscape Water Bodies: Treatment Techniques and Restoration Strategies towards Ecosystem Services Enhancement. Processes 2022, 10, 2486. [Google Scholar] [CrossRef]
- Grebel, J.; Mohanty, S.; Torkelson, A.; Boehm, A.; Higgins, C.; Maxwell, R.; Nelson, K.; Sedlak, D. Engineered Infiltration Systems for Urban Stormwater Reclamation. Environ. Eng. Sci. 2013, 30, 437–454. [Google Scholar] [CrossRef]
- Hung, A.; Li, L.; Swei, O. Evaluation of permeable highway pavements via an integrated life-cycle model. J. Clean. Prod. 2021, 314, 128043. [Google Scholar] [CrossRef]
- Baek, S.; Ligaray, M.; Pachepsky, Y.; Chun, J.A.; Yoon, K.-S.; Park, Y.; Cho, K. Assessment of a green roof practice using the coupled SWMM and HYDRUS models. J. Environ. Manag. 2020, 261, 109920. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.Y.; Guo, R.Z.; Tang, H. Potential assessment and implementation strategy for roof greening in highly urbanized areas: A case study in Shenzhen, China. Cities 2019, 95, 102468. [Google Scholar] [CrossRef]
- Speak, A.; Rothwell, J.; Lindley, S.; Smith, C. Metal and nutrient dynamics on an aged intensive green roof. Environ. Pollut. 2014, 184, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.A.; Rahman, A.; Tao, P.Z.; Garner, B.; Griffith, R.; Liebman, M. Green roof as an effective tool for sustainable urban development: An Australian perspective in relation to stormwater and building energy management. J. Clean. Prod. 2022, 362, 132561. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z.; Sunxun, Z.; Ge, D. Stormwater retention and detention performance of green roofs with different substrates: Observational data and hydrological simulations. J. Environ. Manag. 2021, 291, 112682. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, F.; Mohorko, R. Review on the Roles and Effects of Growing Media on Plant Performance in Green Roofs in World Climates. Urban For. Urban Green. 2017, 23, 13–26. [Google Scholar] [CrossRef]
- Dunnett, N.; Nagase, A.; Hallam, A. The dynamics of planted and colonising species on a green roof over six growing seasons 2001–2006: Influence of substrate depth. Urban Ecosyst. 2008, 11, 373–384. [Google Scholar] [CrossRef]
- Nagase, A.; Dunnett, N. Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landsc. Urban Plann. 2012, 104, 356–363. [Google Scholar] [CrossRef]
- Carter, T.; Rasmussen, T. Hydrologic behavior of vegetated roofs. J. Am. Water Resour. Assoc. 2006, 42, 1261–1274. [Google Scholar] [CrossRef]
- Villarreal, E.; Bengtsson, L. Response of a Sedum green-roof to individual rain events. Ecol. Eng. 2005, 25, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J. Green roofs in the humid subtropics: The role of environmental and design factors on stormwater retention and peak reduction. Sci. Total Environ. 2022, 858, 159710. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Wu, Z.; Wang, Y.; Sun, S.; Wei, W.; Xu, Y. Does the spatial location of green roofs affects runoff mitigation in small urbanized catchments? J. Environ. Manag. 2020, 268, 110707. [Google Scholar] [CrossRef] [PubMed]
- Palermo, S.A.; Talarico, V.; Turco, M. On the LID systems effectiveness for urban stormwater management: Case study in Southern Italy. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012012. [Google Scholar] [CrossRef]
- Ge; Zhang, S.-H. Impacts of Vegetation on Hydrological Performances of Green Roofs under Different Rainfall Conditions. Environ. Sci. 2018, 39, 5015–5023. [Google Scholar] [CrossRef]
- Soulis, K.; Valiantzas, J.; Ntoulas, N.; Kargas, G.; Nektarios, P. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model. J. Environ. Manag. 2017, 200, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrologic performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414, 148–161. [Google Scholar] [CrossRef]
- Todorov, D.; Driscoll, C.; Todorova, S.; Montesdeoca, M. Water quality function of an extensive vegetated roof. Sci. Total Environ. 2018, 625, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, V.; Joshi, U.; Balasubramanian, R. A Field Study to Evaluate Runoff Quality from Green Roofs. Water Res. 2012, 46, 1337–1345. [Google Scholar] [CrossRef]
- Kuppusamy, V.; Joshi, U. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs. Environ. Pollut. 2014, 194, 121–129. [Google Scholar] [CrossRef]
- Liu, R.; Stanford, R.; Deng, Y.; Liu, D.; Liu, Y.; Yu, S. The influence of extensive green roofs on rainwater runoff quality: A field-scale study in southwest China. Environ. Sci. Pollut. Res. 2020, 27, 12932–12941. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioğlu, Ö.; Özger, M. An integrated framework for the comprehensive evaluation of low impact development strategies. J. Environ. Manag. 2021, 294, 113023. [Google Scholar] [CrossRef] [PubMed]
- Thomaidi, V.; Petousi, I.; Kotsia, D.; Kalogerakis, N.; Fountoulakis, M. Use of green roofs for greywater treatment: Role of substrate, depth, plants, and recirculation. Sci. Total Environ. 2021, 807, 151004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, C.; Fu, D.; Liu, W. Improvement of Pollutant Controlling Performance by Modified Aggregate Structure in Extensive Green Roof Substrate Layer. Environ. Sci. Water Res. Technol. 2022, 8, 1709–1718. [Google Scholar] [CrossRef]
- Dutta, A.; Sanchez Torres, A.; Vojinovic, Z. Evaluation of Pollutant Removal Efficiency by Small-Scale Nature-Based Solutions Focusing on Bio-Retention Cells, Vegetative Swale and Porous Pavement. Water 2021, 13, 2361. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, J.; Che, W.; Sun, H. Runoff quality and quantity after usage of layered or mixed substrate green roofs: A laboratory study. Desalin. Water Treat. 2020, 178, 396–404. [Google Scholar] [CrossRef]
- Jeon, J.; Hong, J.; Jeon, M.; Shin, D.; Kim, L.-H. Assessment of hydrologic and environmental performances of green roof system for improving urban water circulation. Desalin. Water Treat. 2019, 161, 14–20. [Google Scholar] [CrossRef]
- Chai, H.; Tang, Y.; Su, X.; Wang, W.; Lu, H.; Shao, Z.; He, Q. Annual variation patterns of the effluent water quality from a green roof and the overall impacts of its structure. Environ. Sci. Pollut. Res. 2018, 25, 30170–30179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhong, X.; Che, W.; Sun, H.; Zhang, H. A laboratory study to determine the use of polluted river sediment as a substrate for extensive green roofs. Water Sci. Technol. 2018, 78, 2247–2255. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Smith, C.; Memon, F.; Philip, L. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland: GROW. Ecol. Eng. 2017, 106, 55–65. [Google Scholar] [CrossRef]
- Bui, X.-T.; Nguyen, T.; Phan, V.; Hien, V.; Dan, N.; Koottatep, T. Performance of wetland roof with Melampodium paludosum treating septic tank effluent. Desalin. Water Treat. 2013, 52, 1070–1076. [Google Scholar] [CrossRef]
- Zhou, S.J.; Ren, B.Z.; Deng, R.J. An Experimental Study on Green Water-storing Roof’s Removal Efficiency of Pollutants in Rainwater Runoff. In Proceedings of the Beijing International Environmental Technology Conference, Beijing, China, 16–19 October 2009; pp. 287–293. [Google Scholar]
- Guo, J.; Zhang, Y.; Che, S. Performance analysis and experimental study on rainfall water purification with an extensive green roof matrix layer in Shanghai, China. Water Sci. Technol. 2017, 77, wst2017582. [Google Scholar] [CrossRef]
- Kuppusamy, V.; Joshi, U. Application of seaweed as substrate additive in green roofs: Enhancement of water retention and sorption capacity. Landsc. Urban Plann. 2015, 143, 25–32. [Google Scholar] [CrossRef]
- Kuppusamy, V.; Raja, F. Design and development of green roof substrate to improve runoff water quality: Plant growth experiments and adsorption. Water Res. 2014, 63, 94–101. [Google Scholar] [CrossRef]
- Seidl, M.; Gromaire, M.-C.; Saad, M.; Gouvello, B. Effect of substrate depth and rain-event history on the pollutant abatement of green roofs. Environ. Pollut. 2013, 183, 195–203. [Google Scholar] [CrossRef]
- Gregoire, B.G.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar] [CrossRef]
- Sarah, A.; Ebbs, S.; Battaglia, L.; Retzlaff, B. Heavy metals in leachate from simulated green roof systems. Ecol. Eng. 2011, 37, 1709–1717. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Li, H.; Zhang, X.; He, S.; Miao, Y. A comparison of the growth status, rainfall retention and purification effects of four green roof plant species. J. Environ. Manag. 2021, 278, 111451. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Beecham, S.; Kazemi, F. Impact of green roofs on stormwater quality in a South Australian urban environment. Sci. Total Environ. 2013, 470–471, 651–659. [Google Scholar] [CrossRef]
- Castro, N.; Goldenfum, J.; Lopes da Silveira, A.L.; DallAgnol, A.; Loebens, L.; Demarco, C.; Leandro, D.; Nadaleti, W.; Quadro, M. The analysis of green roof’s runoff volumes and its water quality in an experimental study in Porto Alegre, Southern Brazil. Environ. Sci. Pollut. Res. 2020, 27, 9520–9534. [Google Scholar] [CrossRef]
- Imran, H.M.; Akib, S.; Karim, M. Permeable pavement and stormwater management systems: A review. Environ. Technol. 2013, 34, 2649–2656. [Google Scholar] [CrossRef]
- Wu, J.; Thompson, J. Quantifying impervious surface changes using time series planimetric data from 1940 to 2011 in four central Iowa cities, U.S.A. Landsc. Urban Plan. 2013, 120, 34–47. [Google Scholar] [CrossRef]
- Hernández-Crespo, C.; Fernández-Gonzalvo, M.; Martín Monerris, M.; Andrés-Doménech, I. Influence of rainfall intensity and pollution build-up levels on water quality and quantity response of permeable pavements. Sci. Total Environ. 2019, 684, 303–313. [Google Scholar] [CrossRef]
- Kumar, K.; Kozak, J.; Hundal, L.; Cox, A.; Zhang, H.; Granato, T. In-situ infiltration performance of different permeable pavements in a employee used parking lot—A four-year study. J. Environ. Manag. 2016, 167, 8–14. [Google Scholar] [CrossRef]
- Park, J.; Park, J.; Cheon, J.; Lee, J.; Shin, H. Analysis of Infiltrating Water Characteristics of Permeable Pavements in a Parking Lot at Full Scale. Water 2020, 12, 2081. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.-Q.; Cheng, Y.; Tan, S. Assessing performance of porous pavements and bioretention cells for stormwater management in response to probable climatic changes. J. Environ. Manag. 2019, 243, 157–167. [Google Scholar] [CrossRef]
- Pezzaniti, D.; Beecham, S.; Kandasamy, J. Stormwater Treatment Using Permeable Pavements. Water Manag. 2012, 165, 161–170. [Google Scholar] [CrossRef]
- Drake, J.; Bradford, A.; Marsalek, J. Review of environmental performance of permeable pavement systems: State of the knowledge. Water Qual. Res. J. Can. 2013, 48, 2013. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.; Liao, Z.; Zhang, K.; Schmidt, A.; Tao, T. Laboratory analysis on the surface runoff pollution reduction performance of permeable pavements. Sci. Total Environ. 2019, 691, 1–8. [Google Scholar] [CrossRef]
- Mahmoud, A.; Alam, T.; Sanchez, A.; Guerrero, J.; Oraby, T.; Ibrahim, E.; Jones, K. Stormwater Runoff Quality and Quantity from Permeable and Traditional Pavements in Semiarid South Texas. J. Environ. Eng. 2020, 146, 15. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Zou, Y.; Qi, Q.; Tan, K.; Santamouris, M.; He, B.-J. Performance synergism of pervious pavement on stormwater management and urban heat island mitigation: A review of its benefits, key parameters, and co-benefits approach. Water Res. 2022, 221, 118755. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Sarkar, P. Clogging in Pervious Concrete Pavement Made with Non-conventional Aggregates: Performance Evaluation and Rehabilitation Technique. Arab. J. Sci. Eng. 2021, 46, 10381–10396. [Google Scholar] [CrossRef]
- Park, S.-B.; Tia, M. An experimental study on the water-purification properties of porous concrete. Cem. Concr. Res. 2004, 34, 177–184. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.-Q.; Li, Y.; Hou, Q.; Yu, Y.; Qi, J.; Fu, W.; Dong, J.; Cheng, Y. Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells. Water 2018, 10, 1629. [Google Scholar] [CrossRef]
- Davis, A.; Hunt, W.; Traver, R.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Lucke, T.; Nichols, P. The Pollution Removal and Stormwater Reduction Performance of Street-side Bioretention Basins after Ten Years in Operation. Sci. Total Environ. 2015, 536, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sharkey, L.; Asce, M.; Hunt, W.; Davis, A.; Asce, F. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J. Hydrol. Eng. 2009, 14, 407–415. [Google Scholar] [CrossRef]
- Winston, R.; Dorsey, J.; Hunt, W. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Kluge, B.; Markert, A.; Facklam, M.; Sommer, H.; Kaiser, M.; Pallasch, M.; Wessolek, G. Metal accumulation and hydraulic performance of bioretention systems after long-term operation. J. Soils Sediments 2018, 18, 431–441. [Google Scholar] [CrossRef]
- Liu, J.; Sample, D.; Bell, C.; Guan, Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef]
- Kuppusamy, V.; Ranga Suba, P. Dracaena marginata biofilter: Design of growth substrate and treatment of stormwater runoff. Environ. Technol. 2015, 37, 1101–1109. [Google Scholar] [CrossRef]
- Skorobogatov, A.; He, J.; Chu, A.; Valeo, C.; van Duin, B. The impact of media, plants and their interactions on bioretention performance: A review. Sci. Total Environ. 2020, 715, 136918. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Du, W.; Chen, L.; Shen, Z.; Chang, C.-C.; Ma, Y. Prioritizing the soil and filler layers of a bioretention system by considering multiple hydrological effects. J. Hydrol. 2021, 603, 127008. [Google Scholar] [CrossRef]
- Mahmoud, A.; Alam, T.; Rahman, M.Y.A.; Sanchez, A.; Guerrero, J.; Jones, K. Evaluation of Field-Scale Stormwater Bioretention Structure Flow and Pollutant Load Reductions in a Semi-Arid Coastal Climate. Ecol. Eng. 2019, 142, 100007. [Google Scholar] [CrossRef]
- Jia, H.; Wang, X.; Ti, C.; Zhai, Y.; Field, R.; Tafuri, A.; Cai, H.; Yu, S. Field monitoring of a LID-BMP treatment train system in China. Environ. Monit. Assess. 2015, 187, 4595. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Hunt, W. Improving Bioretention/Biofiltration Performance with Restorative Maintenance. Water Sci. Technol. 2012, 65, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Hunt, W.; Davis, A.; Traver, R. Meeting Hydrologic and Water Quality Goals through Targeted Bioretention Design. J. Environ. Eng. 2012, 138, 698–707. [Google Scholar] [CrossRef]
- Blecken, G.; Marsalek, J.; Viklander, M. Laboratory Study of Stormwater Biofiltration in Low Temperatures: Total and Dissolved Metal Removals and Fates. Water Air Soil Pollut. 2011, 219, 303–317. [Google Scholar] [CrossRef]
- Gülbaz, S.; Kazezyılmaz-Alhan, C.; Copty, N. Evaluation of Heavy Metal Removal Capacity of Bioretention Systems. Water Air Soil Pollut. 2015, 226, 376. [Google Scholar] [CrossRef]
- Osman, M.; Wan Yusof, K.; Takaijudin, H.; Goh, H.; Abdul Malek, M.; Azizan, N.; Ab Ghani, A.; Abdurrasheed, A. A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. Sustainability 2019, 11, 5415. [Google Scholar] [CrossRef]
- Jhonson, P.; Goh, H.; Chan, D.; Juiani, S.F.; Zakaria, N. Potential of bioretention plants in treating urban runoff polluted with greywater under tropical climate. Environ. Sci. Pollut. Res. 2022, 30, 24562–24574. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Liu, J.; Zhang, L.; Li, G.; Zhang, Z.; Gong, Y.; Li, H.; Li, J. Coal gangue modified bioretention system for runoff pollutants removal and the biological characteristics. J. Environ. Manag. 2022, 314, 115044. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, Z.; Kong, Z.; Gu, L.; Fang, J.; Chai, H. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment. J. Water Process Eng. 2020, 37, 101414. [Google Scholar] [CrossRef]
- Yang, F.; Fu, D.; Liu, S.; Zevenbergen, C.; Singh, R. Hydrologic and Pollutant Removal Performance of Media Layers in Bioretention. Water 2020, 12, 921. [Google Scholar] [CrossRef]
- Shrestha, P.; Faulkner, J.; Kokkinos, J.; Hurley, S. Influence of low-phosphorus compost and vegetation in bioretention for nutrient and sediment control in runoff from a dairy farm production area. Ecol. Eng. 2020, 150, 105821. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Z.; Shibata, S. Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability 2020, 12, 9982. [Google Scholar] [CrossRef]
- Xiong, J.; Ren, S.; He, Y.; Bai, X.; Wang, J.; Dzakpasu, M. Bioretention cell incorporating Fe-biochar and saturated zones for enhanced stormwater runoff treatment. Chemosphere 2019, 237, 124424. [Google Scholar] [CrossRef]
- Qiu, F.; Zhao, S.; Zhao, D.; Wang, J.; Fu, K. Enhanced Nutrients Removal in Bioretention Systems Modified with Water Treatment Residual and Internal Water Storage Zone. Environ. Sci. Water Res. Technol. 2019, 5, 993–1003. [Google Scholar] [CrossRef]
- Johnson, J.; Hunt, W. A Retrospective Comparison of Water Quality Treatment in a Bioretention Cell 16 Years Following Initial Analysis. Sustainability 2019, 11, 1945. [Google Scholar] [CrossRef]
- Braswell, A.; Anderson, A.; Hunt, W. Hydrologic and Water Quality Evaluation of a Permeable Pavement and Biofiltration Device in Series. Water 2018, 10, 33. [Google Scholar] [CrossRef]
- Nichols, P.; Lucke, T.; Drapper, D. Field and Evaluation Methods Used to Test the Performance of a Stormceptor® Class 1 Stormwater Treatment Device in Australia. Sustainability 2015, 7, 16311–16323. [Google Scholar] [CrossRef]
- Dagenais, D.; Brisson, J.; Fletcher, T. The role of plants in bioretention systems; does the science underpin current guidance? Ecol Eng. 2018, 120, 532–545. [Google Scholar] [CrossRef]
- Read, J.; Fletcher, T.; Wevill, T.; Deletic, A. Plant Traits that Enhance Pollutant Removal from Stormwater in Biofiltration Systems. Int. J. Phytoremediat. 2010, 12, 34–53. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of Nutrients in Various Types of Constructed Wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Headley, T.; Tanner, C. Constructed Wetlands with Floating Emergent Macrophytes: An Innovative Stormwater Treatment Technology. Crit. Rev. Environ. Sci. Technol. 2011, 42, 2261–2310. [Google Scholar] [CrossRef]
- Sharma, R.; Vymazal, J.; Malaviya, P. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Sci. Total Environ. 2021, 777, 146044. [Google Scholar] [CrossRef]
- Liu, A.; Egodawatta, P.; Goonetilleke, A. Ranking Three Water Sensitive Urban Design (WSUD) Practices Based on Hydraulic and Water Quality Treatment Performance: Implications for Effective Stormwater Treatment Design. Water 2022, 14, 1296. [Google Scholar] [CrossRef]
- Lenhart, H.; Hunt, W. Evaluating Four Storm-Water Performance Metrics with a North Carolina Coastal Plain Storm-Water Wetland. J. Environ. Eng. ASCE 2010, 137, 155–162. [Google Scholar] [CrossRef]
- Rizzo, A.; Bresciani, R.; Masi, F.; Boano, F.; Revelli, R.; Ridolfi, L. Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow. J. Hydrol. 2018, 560, 150–159. [Google Scholar] [CrossRef]
- Chunbo, Y.; Zhao, F.; Zhao, X.; Zhao, Y. Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland. Chem. Eng. J. 2020, 392, 124840. [Google Scholar] [CrossRef]
- Tanner, C.; Headley, T. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol. Eng. 2011, 37, 474–486. [Google Scholar] [CrossRef]
- Chua, L.; Tan, S.; Sim, C.H.; Goyal, M. Treatment of baseflow from an urban catchment by a floating wetland system. Ecol. Eng. 2012, 49, 170–180. [Google Scholar] [CrossRef]
- Maxwell, B.; Winter, D.; Birgand, F. Floating treatment wetland retrofit in a stormwater wet pond provides limited water quality improvements. Ecol. Eng. 2020, 149, 105784. [Google Scholar] [CrossRef]
- Hua, P.; Yang, W.; Qi, X.; Jiang, S.; Xie, J.; Xianyong, G.; Li, H.; Zhang, J.; Krebs, P. Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development. J. Clean. Prod. 2020, 242, 118515. [Google Scholar] [CrossRef]
- Luan, Q.; Fu, X.; Song, C.; Wang, H.; Liu, J.; Wang, Y. Runoff Effect Evaluation of LID through SWMM in Typical Mountainous, Low-Lying Urban Areas: A Case Study in China. Water 2017, 9, 439. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.; Zhang, D. Opportunities and challenges in green stormwater infrastructure (GSI): A comprehensive and bibliometric review of ecosystem services from 2000 to 2021. Environ. Res. 2023, 236, 116701. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.; Guo, W.; Ren, N.-Q.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management—Sponge City. Sci. Total Environ. 2018, 652, 147–162. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, H.; Demarie, F. Facilitators and Barriers of Applying Low Impact Development Practices in Urban Development. Water Resour. Manag. 2017, 31, 3795–3808. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.; Ren, M.; Li, C.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef]
- Ortega, A.; Rodríguez Sánchez, J.; Bharati, L. Building flood-resilient cities by promoting SUDS adoption: A multi-sector analysis of barriers and benefits in Bogotá, Colombia. Int. J. Disaster Risk Reduct. 2023, 88, 103621. [Google Scholar] [CrossRef]
- Labadie, K. Identifying Barriers to Low Impact Development and Green Infrastructure in the Albuquerque Area. Master’s Thesis, The University of New Mexico, Albuquerque, NM, USA, 2011. [Google Scholar]
- Xu, C.Q.; Tang, T.; Jia, H.F.; Xu, M.; Xu, T.; Liu, Z.J.; Long, Y.; Zhang, R.R. Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resour. Conserv. Recycl. 2019, 151, 104478. [Google Scholar] [CrossRef]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef] [PubMed]
Country | Runoff Source | Scale | Filter Media | Pollutant Removal Efficiency (%) | Reference | |||
---|---|---|---|---|---|---|---|---|
TSS | COD | TN | TP | |||||
Greece | Natural rainfall events | Field | Vermiculite | 93.00 | 91.00 | 87.00 | N/A | Thomaidi et al. [65] |
China | Simulated rainfall events | Laboratory | Peat soil, vermiculite and polyaluminum chloride (PAC) | N/A | N/A | 6.04 | 84.33 | Zhang et al. [66] |
Turkey | Simulated rainfall events | Laboratory | N/A | 41.15 | 39.73 | 29.58 | 32.26 | Koc et al. [64] |
The Netherlands | Simulated rainfall events | Laboratory | N/A | 22.00 | N/A | 19.00 | 20.00 | Dutta et al. [67] |
China | Simulated rainfall events | Laboratory | Combined substrate | 44.77 | N/A | 19.60 | 45.51 | Zhang et al. [68] |
China | natural rainfall events | Field | Commercial substrate | 31.60 | 25.10 | 37.80 | N/A | Liu et al. [63] |
Republic of Korea | natural rainfall events | Field | N/A | 77.00 | N/A | 57.00 | 53.00 | Jeon et al. [69] |
China | natural rainfall events | Field | Perlite or recycled bricks | 37.85 | N/A | 14.52 | 12.93 | Chai et al. [70] |
China | Simulated rainfall events | Laboratory | Peat soil | N/A | 30.00 | 42.00 | 47.00 | Zhang et al. [71] |
India | Simulated rainfall events | Laboratory | Sand, brick bats, and gravel | 85.00–90.00 | 88.00 | 88.00–99.00 | 92.00 | Chandrasekaran et al. [72] |
Vietnam | Natural rainfall events | Field | Soil, sand, crushed stone, and gravel | 64.30–73.10 | 77.00–78.00 | 88.00–91.00 | 72.00–78.00 | Bui et al. [73] |
China | Simulated rainfall events | Laboratory | N/A | 80.00–90.00 | 50.00–70.00 | 50.00–70.00 | 40.00–70.00 | Zhou et al. [74] |
Country | Filter Media | Runoff Source | Removal Efficiency of Heavy Metal (%) | Reference | |||
---|---|---|---|---|---|---|---|
Cu | Zn | Pb | Cd | ||||
China | Loam, perlite, pure cocopeat, and sodium polyacrylate | Simulated rainfall events | N/A | 94.55 | 98.84 | N/A | Guo et al. [75] |
India | Perlite, vermiculite, sand, crushed brick, cocopeat, and T. conoides | Simulated rainfall events | 95.50 | 96.60 | 98.30 | 97.80 | Kuppusamy and Joshi [76] |
India | Perlite, crushed brick, and sand | Simulated rainfall events | 99.20 | 97.40 | 99.90 | 99.90 | Kuppusamy and Raja [77] |
France | Commercial substrate | Natural rainfall events | 87.00–90.00 | 70.00–98.00 | N/A | N/A | Seidl et al. [78] |
USA | Commercial substrate | Natural rainfall events | 50.00 | 65.80 | Nearly 100 | N/A | Gregoire et al. [79] |
USA | An expanded clay mixed with pine bark | Simulated rainfall events | 94.00 | 65.02 | 80.46 | N/A | Sarah et al. [80] |
Country | Bioretention System Information | Site Characteristics | Runoff/Outflow Reduction (%) | Peak Flow Reduction (%) | Other/Notes | Reference |
---|---|---|---|---|---|---|
China | A 10 cm aquifer layer, 5 cm mulch layer, 30 cm soil medium layer, 40 cm filler layer, and 15 cm gravel layer were set by geotextiles | The mean annual precipitation is 587 mm | 14.00–78.00 | 9.00–91.00 | In the 2-year, 30-year, and 100-year return period | Yang et al. [106] |
USA | (250 ft) linear bioretention cell | Located in a highly impermeable area with a total area of 8494 square meters | 80.10–98.20 | N/A | 45 storm events were observed, ranging from 1.8 to 49.5 mm | Mahmoud et al. [107] |
USA | Referred to design guidance in the Ohio Rainwater and Land Development Manual | 0.36 ha, 77.1% impervious catchment | 36.00–59.00 | 24.00–96.00 | 1-year design rainfall intensities | Winston et al. [101] |
Australia | Consisted of a filter medium (usually sandy), underlaid by a gravel drainage layer | The BRSs were located directly adjacent to the roadway | 32.70–84.30 | 79.50–93.60 | Natural rainfall events | Lucke and Nichols. [99] |
Greece | Has a depth of 0.95 m, and media contained a 0.35 m depth of gravel and a 0.4 m depth of soil/planting soil. | Received stormwater runoff from a playground with an area of 7672 m2 | 47.00–80.00 | 50.00–84.00 | A total of 19 natural rainfall events were monitored | Jia et al. [108] |
USA | The BRS employed two different media depths (0.6 and 0.9 m) | N/A | 63.00–89.00 | 84.00–95.00 | Rain depth (mm) between 8.80 and 99.6 mm | Brown and Hunt. [109] |
Country | Runoff Source | Scale | Filter Media | Pollutant Removal Efficiency (%) | Reference | |||
---|---|---|---|---|---|---|---|---|
TSS | COD | TN | TP | |||||
Malaysia | N/A | Laboratory | Sand, topsoil, and compost | 90.00 | 92.50 | 86.40 | 93.50 | Jhonson et al. [115] |
China | Simulated rainfall events | Laboratory | Coal gangue (CG) | N/A | 33.00–86.00 | 30.00–70.00 | 94.00–99.00 | Zhang et al. [116] |
China | Simulated rainfall events | Laboratory | Pyrite and zeolite | N/A | N/A | 89.30 | 81.60 | Chen et al. [117] |
China | Simulated rainfall events | Laboratory | Traditional substrate: sand | N/A | 86.00 | 71.80 | 68.00 | Yang et al. [118] |
USA | Natural rainfall events | Field | Compost | 83.00–96.00 | N/A | 17.30–38.50 | 80.00–92.00 | Shrestha et al. [119] |
Japan | Simulated rainfall events | Laboratory | N/A | 13.00–15.50 | 12.90–16.17 | 12.83–17.34 | 14.03–19.07 | Zhang et al. [120] |
China | Simulated rainfall events | Laboratory | Biochar | 31.60 | 78.5–94.6 | 82.30–97.00 | 57.36–93.70 | Xiong et al. [121] |
China | Simulated rainfall events | Laboratory | Sandy loam | 92.00–97.00 | 64.00–95.00 | 75.00 | >99.00 | Qiu et al. [122] |
USA | Natural rainfall events | Field | Sandy | N/A | N/A | 72.00 | 79.00 | Johnson and Hunt [123] |
USA | Natural rainfall events | Field | Sand, compost, and pure sand | 91.00–97.00 | N/A | 38.00–57.00 | 86.00–94.00 | Shrestha et al. [110] |
USA | Natural rainfall events | Field | N/A | 96.00 | N/A | 42.00 | 75.00 | Braswell et al. [124] |
Australia | Natural rainfall events | Field | N/A | 83.00 | N/A | 23.00 | 11.00 | Nichols et al. [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Rao, Q.; Chen, B.; Liu, X.; Adnan Ikram, R.M.; Li, J.; Wang, M.; Zhang, D. Mechanisms and Applications of Nature-Based Solutions for Stormwater Control in the Context of Climate Change: A Review. Atmosphere 2024, 15, 403. https://doi.org/10.3390/atmos15040403
Sun C, Rao Q, Chen B, Liu X, Adnan Ikram RM, Li J, Wang M, Zhang D. Mechanisms and Applications of Nature-Based Solutions for Stormwater Control in the Context of Climate Change: A Review. Atmosphere. 2024; 15(4):403. https://doi.org/10.3390/atmos15040403
Chicago/Turabian StyleSun, Chuanhao, Qiuyi Rao, Biyi Chen, Xin Liu, Rana Muhammad Adnan Ikram, Jianjun Li, Mo Wang, and Dongqing Zhang. 2024. "Mechanisms and Applications of Nature-Based Solutions for Stormwater Control in the Context of Climate Change: A Review" Atmosphere 15, no. 4: 403. https://doi.org/10.3390/atmos15040403
APA StyleSun, C., Rao, Q., Chen, B., Liu, X., Adnan Ikram, R. M., Li, J., Wang, M., & Zhang, D. (2024). Mechanisms and Applications of Nature-Based Solutions for Stormwater Control in the Context of Climate Change: A Review. Atmosphere, 15(4), 403. https://doi.org/10.3390/atmos15040403