Wavelet Analysis of Atmospheric Ozone and Ultraviolet Radiation on Solar Cycle-24 over Lumbini, Nepal
Abstract
:1. Introduction
2. Methodology
2.1. Site Description
2.2. Data Analysis and Data Analytic Tools
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alebrahim, M.A.; Bakkar, M.M.; Al Darayseh, A.; Msameh, A.; Jarrar, D.; Aljabari, S.; Khater, W. Awareness and Knowledge of the Effect of Ultraviolet (UV) Radiation on the Eyes and the Relevant Protective Practices: A Cross-Sectional Study from Jordan. Healthcare 2022, 10, 2414. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Radiation. Lyon (FR): International Agency for Research on Cancer; 2012. (IARC Monographs on Evaluating Carcinogenic Risks to Humans, No. 100D.) “SOLAR AND ULTRAVIOLET RADIATION”. Available online: https://www.ncbi.nlm.nih.gov/books/NBK304366/ (accessed on 5 March 2024).
- Bornman, J.F.; Barnes, P.W.; Robson, T.M.; Robinson, S.A.; Jansen, M.A.K.; Ballaré, C.L.; Flint, S.D. Linkages between stratospheric ozone, uv radiation and climate change and their implications for terrestrial ecosystems. Photochem. Photobiol. Sci. 2019, 18, 681–716. [Google Scholar] [CrossRef]
- Dale Wilson, B.; Moon, S.; Armstrong, F. Comprehensive Review of Ultraviolet Radiation and the Current Status on Sunscreens. J. Clin. Aesthet. Dermatol. 2012, 5, 18–23. [Google Scholar]
- Batakliev, T.; Georgiev, V.; Anachkov, M.; Rakovsky, S.; Zaikov, G.E. Ozone Decomposition. Interdiscip. Toxicol. 2014, 7, 47–59. [Google Scholar] [CrossRef]
- Volz, A.; Kley, D. Evaluation of the montsouris series of ozone measurements made in the nineteenth century. Nature 1988, 332, 240–242. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv) (accessed on 5 March 2024).
- EPA United States Protection Agency. Available online: https://www.epa.gov/ozone-layer-protection/frequently-asked-questions-about-ozone-layer#section1 (accessed on 5 March 2024).
- Herman, J.R.; Hudson, R.; McPeters, R.; Stolarski, R.; Ahmad, Z.; Gu, X.Y.; Taylor, S.; Wellemeyer, C. A new selfcalibration method applied to toms and sbuv backscattered ultraviolet data to determine long-term global ozone change. J. Geophys. Res. Atmos. 1991, 96, 7531–7545. [Google Scholar] [CrossRef]
- Kudish, A.; Ianetz, A. Analysis of the solar radiation data for Beer Sheva, Israel, and its environs. Sol. Energy 1992, 48, 97–106. [Google Scholar] [CrossRef]
- Ogawa, T.; Miyata, A. Seasonal behavior of the tropospheric ozone in Japan. In Atmospheric Ozone: Proceedings of the Quadrennial Ozone Symposium Held in Halkidiki, Greece 3–7 September 1984; Springer: Berlin/Heidelberg, Germany, 1985; pp. 754–758. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Ramanathan, V.; Ramana, M.V.; Roberts, G.; Kim, D.; Corrigan, C.; Chung, C.; Winker, D. Warming trends in asia amplified by brown cloud solar absorption. Nature 2007, 448, 575–578. [Google Scholar] [CrossRef]
- Bernhard, G.H.; Neale, R.E.; Barnes, P.W.; Neale, P.J.; Zepp, R.G.; Wilson, S.R.; Andrady, A.L.; Bais, A.F.; McKenzie, R.L.; Aucamp, P.J.; et al. Environmental Effects of Stratospheric Ozone Depletion, UV Radiation and Interactions with Climate Change: UNEP Environmental Effects Assessment Panel, Update 2019. Photochem. Photobiol. Sci. 2020, 19, 542–584. [Google Scholar] [CrossRef]
- Wang, H.; Lu, X.; Jacob, D.J.; Cooper, O.R.; Chang, K.-L.; Li, K.; Gao, M.; Liu, Y.; Sheng, B.; Wu, K.; et al. Global Tropospheric Ozone Trends, Attributions, and Radiative Impacts in 1995–2017: An Integrated Analysis Using Aircraft (IAGOS) Observations, Ozonesonde, and Multi-Decadal Chemical Model Simulations. Atmos. Chem. Phys. 2022, 22, 13753–13782. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers. 2011. Available online: https://wedocs.unep.org/20.500.11822/8028 (accessed on 13 April 2024).
- Andreae, M.O.; Ramanathan, V. Climate’s dark forcings. Science 2013, 340, 280–281. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Stolarski, R.; Bojkov, R.; Bishop, L.; Zerefos, C.; Staehelin, J.; Zawodny, J. Measured trends in stratospheric ozone. Science 1992, 256, 342–349. [Google Scholar] [CrossRef]
- Harris, N.R.P.; Ancellet, G.; Bishop, L.H.; Hofmann, D.J.; Kerr, J.B.; McPeters, R.D.; Prendez, M.; Randel, W.J.; Staehelin, J.; Subbaraya, B.H.; et al. Trends in stratospheric and free tropospheric ozone. J. Geophys. Res. Atmos. 1997, 102, 1571–1590. [Google Scholar] [CrossRef]
- Ackerman, M.; Muller, C. Stratospheric Methane and Nitrogen Dioxide from Infrared Spectra. Pure Appl. Geophys. 1973, 106, 1325–1335. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Berezina, E.; Moiseenko, K.; Skorokhod, A.; Pankratova, N.V.; Belikov, I.; Belousov, V.; Elansky, N.F. Impact of VOCs and NOx on Ozone Formation in Moscow. Atmosphere 2020, 11, 1262. [Google Scholar] [CrossRef]
- Bittencourt, G.D.; Pinheiro, D.K.; Bencherif, H.; Begue, N.; Peres, L.V.; Bageston, J.V.; da Silva, F.R.; de Bem, D. Multi-Instrumental Analysis of Ozone Vertical Profile and Total Column in South America: Comparison between Subtropical and Equatorial Latitudes. EGUsphere 2023, 1, 1664. [Google Scholar]
- Zeng, Y.; Zhang, J.; Li, Y.; Liu, S.; Chen, H. Wavelet Analysis of Ozone Driving Factors Based on ~20 Years of Ozonesonde Measurements in Beijing. Atmosphere 2023, 14, 1733. [Google Scholar] [CrossRef]
- Mbatha, N.; Bencherif, H. Time Series Analysis and Forecasting Using a Novel Hybrid LSTM Data-Driven Model Based on Empirical Wavelet Transform Applied to Total Column of Ozone at Buenos Aires, Argentina (1966–2017). Atmosphere 2020, 11, 457. [Google Scholar] [CrossRef]
- Peled, A.; Appelbaum, J. Evaluation of Solar Radiation Properties by Statistical Tools and Wavelet Analysis. Renew. Energy 2013, 59, 30–38. [Google Scholar] [CrossRef]
- Rupakheti, D.; Adhikary, B.; Praveen, P.S.; Rupakheti, M.; Kang, S.; Mahata, K.S.; Naja, M.; Zhang, Q.; Panday, A.K.; Lawrence, M.G. Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills. Atmos. Chem. Phys. 2017, 17, 11041–11063. [Google Scholar] [CrossRef]
- Rupakheti, D.; Kang, S.; Rupakheti, M. Two heavy haze events over Lumbini in southern Nepal: Enhanced aerosol radiative forcing and heating rates. Atmosphere 2020, 11, 658. [Google Scholar] [CrossRef]
- Kumari, S.; Lakhani, A.; Kumari, K.M. First Observation-Based Study on Surface O3 Trend in Indo-Gangetic Plain: Assessment of Its Impact on Crop Yield. Chemosphere 2020, 255, 126972. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Voulgarakis, A.; Wang, T.; Kasoar, M.; Wells, C.; Yuan, C.; Varma, S.; Mansfield, L. A Study of the Effect of Aerosols on Surface Ozone Through Meteorology Feedbacks over China. Atmos. Chem. Phys. 2021, 21, 5705–5718. [Google Scholar] [CrossRef]
- Regmi, J.; Poudyal, K.N.; Pokhrel, A.; Gyawali, M.; Tripathee, L.; Panday, A.; Barinelli, A.; Aryal, R. Investigation of Aerosol Climatology and Long-Range Transport of Aerosols over Pokhara, Nepal. Atmosphere 2020, 11, 874. [Google Scholar] [CrossRef]
- Zhu, T.; Deng, H.; Huang, J.; Zheng, Y.; Li, Z.; Zhao, R.; Wang, H. Analysis of Ozone Vertical Profiles over Wuyishan Region during Spring 2022, and Their Correlations with Meteorological Factors. Atmosphere 2022, 13, 1505. [Google Scholar] [CrossRef]
- Survey Department, Government of Nepal. Available online: https://dos.gov.np/downloads/nepal-map (accessed on 31 December 2023).
- CBS. Environment Statistics of Nepal 2019; Central Bureau of Statistics, National Planning Commission Secretariat, Government of Nepal: Kathmandu, Nepal, 2019. [Google Scholar]
- CEDA ARCHIVE. Available online: https://data.ceda.ac.uk/badc/toms/data/omi/ (accessed on 7 January 2024).
- The Power Project. Available online: https://power.larc.nasa.gov/ (accessed on 31 December 2023).
- ANACONDA. Available online: https://www.anaconda.com/download (accessed on 10 September 2023).
- Spiegel, M.R.; Stephens, L.J. Schaum’s Outline of Theory and Problems of Statistics; Schaum’s Outline Series; McGraw-Hill: New York, NY, USA, 1998; ISBN 0-07-060281-6. [Google Scholar]
- Anton, M.; Bortoli, D.; Costa, M.J.; Kulkarni, P.S.; Domingues, A.F.; Barriopedro, D.; Serrano, A.; Silva, A.M. Temporal and Spatial Variabilities of Total Ozone Column over Portugal. Remote Sens. Environ. 2011, 115, 855–863. [Google Scholar] [CrossRef]
- Sonechkin, D.M.; Datsenko, N.M. Wavelet Analysis of Nonstationary and Chaotic Time Series with an Application to the Climate Change Problem. In Fractals and Dynamic Systems in Geoscience; Springer: Berlin/Heidelberg, Germany, 2000; pp. 653–677. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Falayi, E.O.; Adepitan, J.O.; Adewole, A.T.; Roy-Layinde, T.O. Analysis of Rainfall Data of Some West African Countries Using Wavelet Transform and Nonlinear Time Series Techniques. J. Spat. Sci. 2023, 68, 385–396. [Google Scholar] [CrossRef]
- Chapagain, N.P. Total ozone content over Kathmandu from TOMS observations. Int. J. Eng. Res. Appl. 2016, 6, 69–75. [Google Scholar]
- Shrestha, P.M.; Chapagain, N.P.; Karki, I.B.; Poudyal, K.N. Study of variability of atmospheric ozone over Jumla in a half period of 24 solar cycles. J. Nepal Phys. Soc. 2021, 7, 31–38. [Google Scholar] [CrossRef]
- Sharma, R.R.; Kjeldstad, B.; Bhattarai, B.K. Comparison of UV Index and Total Ozone Column of Aura/OMI and Ground Measurement from Nepal Himalayas. J. Inst. Eng. 2011, 8, 114–129. [Google Scholar] [CrossRef]
- Shindell, D.T.; Rind, D.; Balachandran, N.; Lean, J.; Lonergan, P. Solar Cycle Variability, Ozone and Climate. Science 1999, 284, 305–308. [Google Scholar] [CrossRef]
- Rupakheti, D.; Kang, S.; Rupakheti, M.; Cong, Z.; Tripathee, L.; Panday, A.K.; Holben, B.N. Observation of optical properties and sources of aerosols at Buddha’s birthplace, Lumbini, Nepal: Environmental implications. Environ. Sci. Pollut. Res. Int. 2018, 25, 14868–14881. [Google Scholar] [CrossRef]
- Meteoblue. Simulated Historical Climate & Weather Data for Lumbini. Available online: https://www.mete oblue.com/en/weather/historyclimate/climatemodelled/lumbini_nepal_1282839/ (accessed on 10 April 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, P.M.; Gupta, S.P.; Joshi, U.; Schmutzler, M.; Aryal, R.; Tiwari, B.R.; Adhikari, B.; Chapagain, N.P.; Karki, I.B.; Poudyal, K.N. Wavelet Analysis of Atmospheric Ozone and Ultraviolet Radiation on Solar Cycle-24 over Lumbini, Nepal. Atmosphere 2024, 15, 509. https://doi.org/10.3390/atmos15040509
Shrestha PM, Gupta SP, Joshi U, Schmutzler M, Aryal R, Tiwari BR, Adhikari B, Chapagain NP, Karki IB, Poudyal KN. Wavelet Analysis of Atmospheric Ozone and Ultraviolet Radiation on Solar Cycle-24 over Lumbini, Nepal. Atmosphere. 2024; 15(4):509. https://doi.org/10.3390/atmos15040509
Chicago/Turabian StyleShrestha, Prakash M., Suresh P. Gupta, Usha Joshi, Morgan Schmutzler, Rudra Aryal, Babu Ram Tiwari, Binod Adhikari, Narayan P. Chapagain, Indra B. Karki, and Khem N. Poudyal. 2024. "Wavelet Analysis of Atmospheric Ozone and Ultraviolet Radiation on Solar Cycle-24 over Lumbini, Nepal" Atmosphere 15, no. 4: 509. https://doi.org/10.3390/atmos15040509
APA StyleShrestha, P. M., Gupta, S. P., Joshi, U., Schmutzler, M., Aryal, R., Tiwari, B. R., Adhikari, B., Chapagain, N. P., Karki, I. B., & Poudyal, K. N. (2024). Wavelet Analysis of Atmospheric Ozone and Ultraviolet Radiation on Solar Cycle-24 over Lumbini, Nepal. Atmosphere, 15(4), 509. https://doi.org/10.3390/atmos15040509