Dust Transport from North Africa to the Middle East: Synoptic Patterns and Numerical Forecast
Abstract
:1. Introduction
2. Materials and Methods
Dust Models
- (i)
- ALADIN-Dust model
- Horizontal dust flux
- Vertical flux
- : average diameter of particles with saltation (~75 μm).
- : average diameter of suspended particles (~6.7 μm).
- (ii)
- ICON-ART model
3. Results and Discussion
3.1. Dust Sources in the Northern Part of the African Continent
3.2. Case Studies
3.2.1. Satellite Images
3.2.2. AERONET Data
3.2.3. CALIPSO Profiles
3.2.4. Synoptic Analysis
3.2.5. HYSPLIT Back Trajectories
3.2.6. Analysis of Dust Forecasting Model Outputs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goudie, A.S. Daesert dust and human health disorders. Environ. Intern. 2014, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Schepanski, K. Transport of mineral dust and its impact on climate. Geosciences 2018, 8, 151. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, F.; Yu, Z.; Li, J. Spatiotemporal variation in soil degradation and economic damage caused by wind erosion in Northwest China. J. Environ. Manag. 2022, 314, 115121. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Kinugasa, T.; Nyamtseren, M.; Liu, S.; Otani, S. Impacts of aeolian desertification and dust storms on eco-systems, economic development, and human health. In Combating Aeolian Desertification in Northeast Asia; Springer Nature Singapore: Singapore, 2022; pp. 129–158. [Google Scholar]
- Dominguez-Rodriguez, A.; Rodríguez, S.; Baez-Ferrer, N.; Abreu-Gonzalez, P.; Abreu-Gonzalez, J.; Avanzas, P.; Carnero, M.; Moris, C.; López-Darias, J.; Hernández-Vaquero, D. Impact of Saharan dust exposure on airway inflammation in patients with ischemic heart disease. Transl. Res. 2020, 224, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Improved representation of the global dust cycle using observational constraints on dust properties and abundance. Atmos. Chem. Phys. 2021, 21, 8127–8167. [Google Scholar] [CrossRef] [PubMed]
- Awadh, S.M. Impact of North African sand and dust storms on the Middle East using Iraq as an example: Causes, sources, and mitigation. Atmosphere 2023, 14, 180. [Google Scholar] [CrossRef]
- Mohebbi, A.; Green, G.T.; Akbariyeh, S.; Yu, F.; Russo, B.J.; Smaglik, E.J. Development of dust storm modeling for use in freeway safety and operations management: An arizona case study. Transp. Res. Rec. 2019, 2673, 175–187. [Google Scholar] [CrossRef]
- Middleton, N.; Kashani, S.S.; Attarchi, S.; Rahnama, M.; Mosalman, S.T. Synoptic causes and socio-economic consequences of a severe dust storm in the middle east. Atmosphere 2021, 12, 1435. [Google Scholar] [CrossRef]
- Olabode, A.D. Statistical Analysis of Weather Parameters for Sustainable Flight Operation in Nigeria. J. Environ. Geogr. 2021, 14, 47–53. [Google Scholar] [CrossRef]
- Struve, T.; Longman, J.; Zander, M.; Lamy, F.; Winckler, G.; Pahnke, K. Systematic changes in circumpolar dust transport to the Subantarctic Pacific Ocean over the last two glacial cycles. Proc. Natl. Acad. Sci. USA 2022, 119, e2206085119. [Google Scholar] [CrossRef]
- Ke, Z.; Liu, X.; Wu, M.; Shan, Y.; Shi, Y. Improved dust representation and impacts on dust transport and radiative effect in CAM5. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002845. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Li, X.; Kaskaoutis, D.G.; Gholami, H.; Li, Y. Disentangling variations of dust concentration in Greenland ice cores over the last glaciation: An overview of current knowledge and new initiative. Earth-Sci. Rev. 2023, 242, 104451. [Google Scholar] [CrossRef]
- Martiny, N.; Chiapello, I. Assessments for the impact of mineral dust on the meningitis incidence in West Africa. Atmos. Environ. 2013, 70, 245–253. [Google Scholar] [CrossRef]
- Maki, T.; Lee, K.C.; Kawai, K.; Onishi, K.; Hong, C.S.; Kurosaki, Y.; Shinoda, M.; Kai, K.; Iwasaka, Y.; Archer, S.D.J.; et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res. Atmos. 2019, 124, 5579–5588. [Google Scholar] [CrossRef]
- Aalismail, N.A.; Ngugi, D.K.; Díaz-Rúa, R.; Alam, I.; Cusack, M.; Duarte, C.M. Functional metagenomic analysis of dust-associated microbiomes above the Red Sea. Sci. Rep. 2019, 9, 13741. [Google Scholar] [CrossRef]
- González-Toril, E.; Osuna, S.; Viúdez-Moreiras, D.; Navarro-Cid, I.; del Toro, S.D.; Sor, S.; Bardera, R.; Puente-Sánchez, F.; de Diego-Castilla, G.; Aguilera, Á. Impacts of saharan dust intrusions on bacterial communities of the low troposphere. Sci. Rep. 2020, 10, 6837. [Google Scholar] [CrossRef]
- Tong, D.Q.; Gill, T.E.; Sprigg, W.A.; Van Pelt, R.S.; Baklanov, A.A.; Barker, B.M.; Bell, J.E.; Castillo, J.; Gassó, S.; Gaston, C.J.; et al. Health and safety effects of airborne soil dust in the americas and beyond. Rev. Geophys. 2023, 61, e2021RG000763. [Google Scholar] [CrossRef]
- Mahilang, M.; Deb, M.K. Seasonal variation and health implications of long-range transported and provincial size dis-tributed aerosols at eastern central India. J. Indian Chem. Soc. 2020, 97, 85–100. [Google Scholar]
- Conte, M.; Merico, E.; Cesari, D.; Dinoi, A.; Grasso, F.M.; Donateo, A.; Guascito, M.R.; Contini, D. Long-term characterisation of African dust advection in South-Eastern Italy: Influence on fine and coarse particle concentrations, size distributions, and carbon content. Atmos. Res. 2020, 233, 104690. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.; Hurynovich, V. Air pollution in the gobi desert region: Analysis of dust-storm events. Q. J. R. Meteorol. Soc. 2021, 147, 1097–1111. [Google Scholar] [CrossRef]
- Gavrouzou, M.; Hatzianastassiou, N.; Gkikas, A.; Lolis, C.J.; Mihalopoulos, N. A Climatological Assessment of Intense Desert Dust Episodes over the Broader Mediterranean Basin Based on Satellite Data. Remote Sens. 2021, 13, 2895. [Google Scholar] [CrossRef]
- Li, L.; Sokolik, I. The Dust Direct Radiative Impact and Its Sensitivity to the Land Surface State and Key Minerals in the WRF-Chem-DuMo Model: A Case Study of Dust Storms in Central Asia. J. Geophys. Res. Atmos. 2018, 123, 4564–4582. [Google Scholar] [CrossRef]
- Tositti, L.; Brattich, E.; Cassardo, C.; Morozzi, P.; Bracci, A.; Marinoni, A.; Di Sabatino, S.; Porcù, F.; Zappi, A. Development and evolution of an anomalous Asian dust event across Europe in March 2020. Atmos. Chem. Phys. 2022, 22, 4047–4073. [Google Scholar] [CrossRef]
- Li, L.; Mahowald, N.M.; Miller, R.L.; García-Pando, C.P.; Klose, M.; Hamilton, D.S.; Ageitos, M.G.; Ginoux, P.; Balkanski, Y.; Green, R.O.; et al. Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmos. Chem. Phys. 2021, 21, 3973–4005. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Wang, Z.; Zhou, J. The Three-Dimensional Structure of Transatlantic African Dust Transport: A New Perspective from CALIPSO LIDAR Measurements. Adv. Meteorol. 2012, 2012, 850704. [Google Scholar] [CrossRef]
- Prospero, J.M.; Mayol-Bracero, O.L. Understanding the Transport and Impact of African Dust on the Caribbean Basin. Bull. Am. Meteorol. Soc. 2013, 94, 1329–1337. [Google Scholar] [CrossRef]
- Gläser, G.; Wernli, H.; Kerkweg, A.; Teubler, F. The transatlantic dust transport from North Africa to the Americas—Its characteristics and source regions. J. Geophys. Res. Atmos. 2015, 120, 11231–11252. [Google Scholar] [CrossRef]
- Francis, D.; Reddy, N.N.; Fonseca, R.; Weston, M.; Flamant, C.; Cherif, C. The dust load and radiative impact associated with the June 2020 historical Saharan dust storm. Atmos. Environ. 2021, 268, 118808. [Google Scholar] [CrossRef]
- Guinoiseau, D.; Singh, S.P.; Galer, S.J.G.; Abouchami, W.; Bhattacharyya, R.; Kandler, K.; Bristow, C.; Andreae, M. Characterization of Saharan and Sahelian dust sources based on geochemical and radiogenic isotope signatures. Quat. Sci. Rev. 2022, 293, 107729. [Google Scholar] [CrossRef]
- Das, S.; Miller, B.V.; Prospero, J.M.; Gaston, C.J.; Royer, H.M.; Blades, E.; Sealy, P.; Chellam, S. Coupling Sr–Nd–Hf isotope ratios and elemental analysis to accurately quantify North African dust contributions to PM2.5 in a complex urban atmosphere by reducing mineral dust collinearity. Environ. Sci. Technol. 2022, 56, 7729–7740. [Google Scholar] [CrossRef]
- Prospero, J.M.; Barkley, A.E.; Gaston, C.J.; Gatineau, A.; Campos-y-Sansano, A.; Panechou, K. Characterizing and quan-tifying African dust transport and deposition to South America: Implications for the phosphorus budget in the Amazon Basin. Glob. Biogeochem. Cycles 2020, 34, e2020GB006536. [Google Scholar] [CrossRef]
- Varga, G. Changing nature of Saharan dust deposition in the Carpathian Basin (Central Europe): 40 years of identified North African dust events (1979–2018). Environ. Int. 2020, 139, 105712. [Google Scholar] [CrossRef]
- Dai, Y.; Hitchcock, P.; Mahowald, N.M.; Domeisen, D.I.; Hamilton, D.S.; Li, L.; Marticorena, B.; Kanakidou, M.; Mihalopoulos, N.; Aboagye-Okyere, A. Stratospheric impacts on dust transport and air pollution in West Africa and the Eastern Mediter-ranean. Nat. Commun. 2022, 13, 7744. [Google Scholar] [CrossRef]
- Merdji, A.B.; Lu, C.; Xu, X.; Mhawish, A. Long-term three-dimensional distribution and transport of Saharan dust: Observation from CALIPSO, MODIS, and reanalysis data. Atmos. Res. 2023, 286, 106658. [Google Scholar] [CrossRef]
- Mona, L.; Amiridis, V.; Cuevas, E.; Gkikas, A.; Trippetta, S.; Vandenbussche, S.; Benedetti, A.; Dagsson-Waldhauserova, P.; Formenti, P.; Haefele, A.; et al. Observing mineral dust in Northern Africa, the Middle East, and Europe: Current capabilities and challenged ahead for the development of dust services. Bull. Am. Meteorol. Soc. 2023, 104, E2223–E2264. [Google Scholar] [CrossRef]
- Szczepanik, D.M.; Poczta, P.; Talianu, C.; Böckmann, C.; Ritter, C.; Stefanie, H.; Toanca, F.; Chojnicki, B.H.; Schüttemeyer, D.; Stachlewska, I.S. Spatio-temporal evolution of long-range transported mineral desert dust properties over rural and urban sites in Central Europe. Sci. Total Environ. 2023, 903, 166173. [Google Scholar] [CrossRef]
- Francis, D.; Fonseca, R.; Nelli, N.; Bozkurt, D.; Picard, G.; Guan, B. Atmospheric rivers drive exceptional Saharan dust transport towards Europe. Atmos. Res. 2022, 266, 105959. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Athanasopoulou, E.; Speyer, O.; Raptis, P.I.; Marinou, E.; Proestakis, E.; Solomos, S.; Gerasopoulos, E.; et al. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements. Atmos. Meas. Technol. 2017, 10, 2435–2453. [Google Scholar] [CrossRef]
- Solomos, S.; Kalivitis, N.; Mihalopoulos, N.; Amiridis, V.; Kouvarakis, G.; Gkikas, A.; Binietoglou, I.; Tsekeri, A.; Kazadzis, S.; Kottas, M.; et al. From tropospheric folding to khamsin and foehn winds: How atmospheric dynamics advanced a record-breaking dust episode in crete. Atmosphere 2018, 9, 240. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Rashki, A.; Dumka, U.; Mofidi, A.; Kambezidis, H.; Psiloglou, B.; Karagiannis, D.; Petrinoli, K.; Gavriil, A. Atmospheric dynamics associated with exceptionally dusty conditions over the Eastern Mediterranean and Greece in March 2018. Atmos. Res. 2019, 218, 269–284. [Google Scholar] [CrossRef]
- Kotsyfakis, M.; Zarogiannis, S.G.; Patelarou, E. The health impact of Saharan dust exposure. Intern. J. Occup. Med. Environ. Health 2019, 32, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Basart, S.; Kazadzis, S.; Votsis, A.; Gkikas, A.; Vandenbussche, S.; Tobias, A.; Gama, C.; García-Pando, C.P.; Terradellas, E.; et al. Multi-sectoral impact assessment of an extreme African dust episode in the Eastern Mediterranean in March 2018. Sci. Total Environ. 2022, 843, 156861. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Dumka, U.; Rashki, A.; Psiloglou, B.; Gavriil, A.; Mofidi, A.; Petrinoli, K.; Karagiannis, D.; Kambezidis, H. Analysis of intense dust storms over the Eastern Mediterranean in March 2018: Impact on radiative forcing and Athens air quality. Atmos. Environ. 2019, 209, 23–39. [Google Scholar] [CrossRef]
- Prasad, A.K.; Singh, R.P. Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data. J. Geophys. Res. Atmos. 2007, 112, D09208. [Google Scholar] [CrossRef]
- Sugimoto, N.; Jin, Y.; Shimizu, A.; Nishizawa, T.; Yumimoto, K. Transport of mineral dust from Africa and Middle East to East Asia observed with the lidar network (AD-Net). Sola 2019, 15, 257–261. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, X.; Yang, Z.; Córdoba-Jabonero, C.; Wang, Y.; Huang, Z.; Da, P.; Luo, Q.; Zhang, Z.; Shi, J.; et al. Transboundary transport of Non-East and East Asian dust observed at Dunhuang, Northwest China. Atmos. Environ. 2024, 318, 120197. [Google Scholar] [CrossRef]
- Tanaka, T.Y.; Kurosaki, Y.; Chiba, M.; Matsumura, T.; Nagai, T.; Yamazaki, A.; Uchiyama, A.; Tsunematsu, N.; Kai, K. Possible transcontinental dust transport from North Africa and the Middle East to East Asia. Atmos. Environ. 2005, 39, 3901–3909. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, Z.; Hu, Z.; Dong, Q.; Li, S. Long-range transport and evolution of saharan dust over East Asia from 2007 to 2020. J. Geophys. Res. Atmos. 2022, 127, 022JD036974. [Google Scholar] [CrossRef]
- Heinold, B.; Tegen, I.; Esselborn, M.; Kandler, K.; Knippertz, P.; Müller, D.; Schladitz, A.; Tesche, M.; Weinzierl, B.; Ansmann, A.; et al. Regional Saharan dust modelling during the SAMUM 2006 campaign. Tellus B 2009, 61, 307–324. [Google Scholar] [CrossRef]
- Kalenderski, S.; Stenchikov, G.; Zhao, C. Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2013, 13, 1999–2014. [Google Scholar] [CrossRef]
- Tegen, I.; Schepanski, K.; Heinold, B. Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations. Atmos. Chem. Phys. 2013, 13, 2381–2390. [Google Scholar] [CrossRef]
- Tsikerdekis, A.; Zanis, P.; Steiner, A.L.; Solmon, F.; Amiridis, V.; Marinou, E.; Katragkou, E.; Karacostas, T.; Foret, G. Impact of dust size parameterizations on aerosol burden and radiative forcing in RegCM4. Atmos. Chem. Phys. 2017, 17, 769–791. [Google Scholar] [CrossRef]
- Francis, D.; Alshamsi, N.; Cuesta, J.; Isik, A.G.; Dundar, C. Cyclogenesis and density currents in the middle east and the associated dust activity in september 2015. Geosciences 2019, 9, 376. [Google Scholar] [CrossRef]
- Solomos, S.; Abuelgasim, A.; Spyrou, C.; Binietoglou, I.; Nickovic, S. Development of a dynamic dust source map for NMME-DREAM v1.0 model based on MODIS Normalized Difference Vegetation Index (NDVI) over the Arabian Peninsula. Geosci. Model Dev. 2019, 12, 979–988. [Google Scholar] [CrossRef]
- Basart, S.; Pérez, C.; Nickovic, S.; Cuevas, E.; Baldasano, J.M. Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B Chem. Phys. Meteorol. 2012, 64, 18539. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East dust events. Aeolian Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Gholami, H.; Mohammadifar, A. Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: A global source. Sci. Rep. 2022, 12, 19342. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, A.; Laleh, E.; Bayat, A. Optical and physical properties, time-period, and severity of dust activities as a function of source for the main dust sources of the Middle East. J. Atmos. Solar-Terr. Phys. 2019, 185, 68–79. [Google Scholar] [CrossRef]
- Papi, R.; Attarchi, S.; Boloorani, A.D.; Samany, N.N. Knowledge discovery of Middle East dust sources using Apriori spatial data mining algorithm. Ecol. Inform. 2022, 72, 101867. [Google Scholar] [CrossRef]
- Alam, K.; Trautmann, T.; Blaschke, T.; Subhan, F. Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sens. Environ. 2014, 143, 216–227. [Google Scholar] [CrossRef]
- Awad, A.M.; Mashat, A.S. Synoptic features associated with dust transition processes from North Africa to Asia. Arab. J. Geosci. 2014, 7, 2451–2467. [Google Scholar] [CrossRef]
- Mashat, A.S.; Alamoudi, A.O.; Awad, A.M.; Assiri, M.E. Seasonal variability and synoptic characteristics of dust cases over southwestern Saudi Arabia. Int. J. Clim. 2017, 38, 105–124. [Google Scholar] [CrossRef]
- Gandham, H.; Dasari, H.P.; Saquib Saharwardi, S.; Karumuri, A.; Hoteit, I. Dust sources over the Arabian Peninsula. Environ. Res. Lett. 2023, 18, 094053. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Pikridas, M.; Barmpounis, K.; Kassell, G.; Logan, D.; Rigler, M.; Ivančič, M.; Mohammadpour, K.; Mihalopoulos, N.; Lelieveld, J.; et al. Aerosol characteristics and types in the marine environments surrounding the East Mediterranean—Middle East (EMME) region during the AQABA campaign. Atmos. Environ. 2023, 298, 119633. [Google Scholar] [CrossRef]
- Parajuli, S.P.; Stenchikov, G.L.; Ukhov, A.; Morrison, H.; Shevchenko, I.; Mostamandi, S. Simulation of a dust-and-rain event across the red sea using WRF-chem. J. Geophys. Res. Atmos. 2023, 128, e2022JD038384. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, I.; Legrand, M.; Dumka, U.C.; Francois, P. Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer—The July 2016 case. Aeol. Res. 2019, 36, 27–44. [Google Scholar] [CrossRef]
- Aswini, M.; Tiwari, S.; Singh, U.; Kurian, S.; Patel, A.; Gunthe, S.S.; Kumar, A. Aeolian dust and sea salt in marine aerosols over the Arabian Sea during the southwest monsoon: Sources and spatial variability. ACS Earth Space Chem. 2022, 6, 1044–1058. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Dousari, A.; Misak, R.; Al-Sudairawi, M.; Naseeb, A.; Al-Dashti, H.; Al-Dousari, N. Economic impact and risk assessment of sand and dust storms (SDS) on the oil and gas industry in kuwait. Sustainability 2019, 11, 200. [Google Scholar] [CrossRef]
- Gandham, H.; Dasari, H.P.; Karumuri, A.; Ravuri, P.M.K.; Hoteit, I. Three-dimensional structure and transport pathways of dust aerosols over West Asia. NPJ Clim. Atmos. Sci. 2022, 5, 45. [Google Scholar] [CrossRef]
- Goudie, A.S. Dust storms and human health. In Extreme Weather Events and Human Health: International Case Studies; Springer International Publishing: Cham, Switzerland, 2019; pp. 13–24. [Google Scholar]
- Soleimani, Z.; Teymouri, P.; Boloorani, A.D.; Mesdaghinia, A.; Middleton, N.; Griffin, D.W. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos. Environ. 2020, 223, 117187. [Google Scholar] [CrossRef]
- Terradellas, E.; Nickovic, S.; Zhang, X.Y. Airborne dust: A hazard to human health, environment and society. WMO Bull. 2015, 64, 42–46. Available online: https://sds-was.aemet.es/materials/hazard.pdf (accessed on 10 January 2024).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iridell, S.S.; White, G.; Woollen, J.; Zhu, Y.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Kistler, R.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Kalnay, E.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP/NCAR 50-year reanalyses: Monthly CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–267. [Google Scholar] [CrossRef]
- Dayan, U.; Ziv, B.; Shoob, T.; Enzel, Y. Suspended dust over southeastern Mediterranean and its relation to atmospheric circulations. Int. J. Clim. 2008, 28, 915–924. [Google Scholar] [CrossRef]
- Israelevich, P.; Ganor, E.; Alpert, P.; Kishcha, P.; Stupp, A. Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. J. Geophys. Res. Atmos. 2012, 117, D02205. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Nastos, P.T.; Kosmopoulos, P.G.; Kambezidis, H.D. Characterizing the long-range transport mecha-nisms of different aerosol types over Athens, Greece during 2000–2005. Int. J. Climatol. 2012, 32, 1249–1270. [Google Scholar] [CrossRef]
- Flaounas, E.; Kotroni, V.; Lagouvardos, K.; Kazadzis, S.; Gkikas, A.; Hatzianastassiou, N. Cyclone contribution to dust transport over the Mediterranean region. Atmos. Sci. Lett. 2015, 16, 473–478. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.A. AERONET-a federated instrument network and data achieve for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef]
- Brakhasi, F.; Hajeb, M.; Mielonen, T.; Matkan, A.; Verbesselt, J. Investigating aerosol vertical distribution using CALIPSO time series over the Middle East and North Africa (MENA), Europe, and India: A BFAST-based gradual and abrupt change detection. Remote Sens. Environ. 2021, 264, 112619. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, B.; Chen, Y.; Lan, J.; Bilal, M.; Pan, M.; Ilyas, S.; Khedher, K.M. Study on Vertically Distributed Aerosol Optical Characteristics over Saudi Arabia Using CALIPSO Satellite Data. Appl. Sci. 2022, 12, 603. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey1 Raluca Radu, C.; Schepers, D.; Simmons, A.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Pu, B.; Yang, Z.; Parajuli, S.P. High summertime aerosol loadings over the arabian sea and their transport pathways. J. Geophys. Res. Atmos. 2018, 123, 10568–10590. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Karami, S.; Kaskaoutis, D.G.; Kashani, S.S.; Rahnama, M.; Rashki, A. Evaluation of nine operational models in fore-casting different types of synoptic dust events in the Middle East. Geosciences 2021, 11, 458. [Google Scholar] [CrossRef]
- Leuenberger, C.; Wegmann, D. Bayesian computation and model selection without likelihoods. Genetics 2010, 184, 243–252. [Google Scholar] [CrossRef]
- Huth, R.; Mládek, R.; Metelka, L.; Sedlák, P.; Huthová, Z.; Kliegrová, S.; Kyselý, J.; Pokorná, L.; Halenka, T.; Janoušek, M. On the integrability of limited-area numerical weather prediction model ALADIN over extended time periods. Stud. Geophys. Et Geod. 2003, 47, 863–873. [Google Scholar] [CrossRef]
- Zender, C.S.; Bian, H.; Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. Atmos. 2003, 108, 4416. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. Atmos. 1995, 100, 16415–16430. [Google Scholar] [CrossRef]
- Noilhan, J.; Planton, S. A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Mokhtari, M. Modeling the Mineral Dust Aerosol Cycle in ALADIN Simulation of the March 7–13 West Africa Dust Storm. Technical Report. Available online: https://www.umr-cnrm.fr/aladin/ (accessed on 10 January 2024).
- Shao, Y.; Raupach, M.R.; Findlater, P.A. Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. Atmos. 1993, 98, 12719–12726. [Google Scholar] [CrossRef]
- Rieger, L.A.; Bourassa, A.E.; Degenstein, D.A. Merging the OSIRIS and SAGE II stratospheric aerosol records. J. Geophys. Res. Atmos. 2015, 120, 8890–8904. [Google Scholar] [CrossRef]
- Vogel, B.; Hoose, C.; Vogel, H.; Kottmeier, C. A model of dust transport applied to the Dead Sea Area. Meteorol. Z. 2006, 15, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Rieger, D.; Steiner, A.; Bachmann, V.; Gasch, P.; Förstner, J.; Deetz, K.; Vogel, B.; Vogel, H. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany. Atmos. Chem. Phys. 2017, 17, 13391–13415. [Google Scholar] [CrossRef]
- White, B.R. Soil transport by winds on Mars. J. Geophys. Res. Solid Earth 1979, 84, 4643–4651. [Google Scholar] [CrossRef]
- Alfaro, S.C.; Gomes, L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res. Atmos. 2001, 106, 18075–18084. [Google Scholar] [CrossRef]
- Gasch, P.; Rieger, D.; Walter, C.; Khain, P.; Levi, Y.; Knippertz, P.; Vogel, B. Revealing the meteorological drivers of the September 2015 severe dust event in the Eastern Mediterranean. Atmos. Chem. Phys. 2017, 17, 13573–13604. [Google Scholar] [CrossRef]
- Rodriguez, S.; Cuevas, E.; Prospero, J.M.; Alastuey, A.; Querol, X.; López-Solano, J.; García, M.I.; Alonso-Pérez, S. Modulation of Saharan dust export by the North African dipole. Atmos. Chem. Phys. 2015, 15, 7471–7486. [Google Scholar] [CrossRef]
- Karam, D.B.; Flamant, C.; Cuesta, J.; Pelon, J.; Williams, E. Dust emission and transport associated with a Saharan depression: February 2007 case. J. Geophys. Res. Atmos. 2010, 115, D00H27. [Google Scholar] [CrossRef]
- Baltaci, H. Spatial and Temporal Variation of the Extreme Saharan Dust Event over Turkey in March 2016. Atmosphere 2017, 8, 41. [Google Scholar] [CrossRef]
- Knippertz, P.; Trentmann, J.; Seifert, A. High resolution simulations of convective cold pools over the northwestern Sahara. J. Geophys. Res. 2009, 114, D21109. [Google Scholar] [CrossRef]
- Prospero, J.M.; Nees, R.T. Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature 1986, 320, 735–738. [Google Scholar] [CrossRef]
- Karayampudi, V.M.; Carlson, T.N. Analysis and Numerical Simulations of the Saharan Air Layer and Its Effect on Easterly Wave Disturbances. J. Atmos. Sci. 1988, 45, 3102–3136. [Google Scholar] [CrossRef]
- Jones, C.; Mahowald, N.; Luo, C. The role of easterly waves on african desert dust transport. J. Clim. 2003, 16, 3617–3628. [Google Scholar] [CrossRef]
- Jones, C.; Mahowald, N.; Luo, C. Observational evidence of African desert dust intensification of easterly waves. Geophys. Res. Lett. 2004, 31, L17208. [Google Scholar] [CrossRef]
- Reed, R.J.; Hollingsworth, A.; Heckley, W.A.; Delsol, F. An evaluation of the performance of the ecmwf operational system in analyzing and forecasting easterly wave disturbances over africa and the tropical atlantic. Mon. Weather Rev. 1988, 116, 824–865. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Thorncroft, C. The Low-Level Structure of African Easterly Waves in 1995. Mon. Weather Rev. 1999, 127, 2266–2280. [Google Scholar] [CrossRef]
- Bercos-Hickey, E.; Nathan, T.R.; Chen, S. Saharan dust and the African easterly jet–African easterly wave system: Structure, location and energetics. Q. J. R. Meteorol. Soc. 2017, 143, 2797–2808. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.C. Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: The role of the low-level jet. Geophys. Res. Lett. 2005, 32, L17701. [Google Scholar] [CrossRef]
- Gherboudj, I.; Beegum, S.N.; Ghedira, H. Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential. Earth-Sci. Rev. 2017, 165, 342–355. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of at-mospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. ReViews Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-storm source areas determined by the total ozone moni-toring spectrometer and surface observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Yu, Y.; Kalashnikova, O.V.; Garay, M.J.; Lee, H.; Notaro, M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophys. Res. Lett. 2018, 45, 6690–6701. [Google Scholar] [CrossRef]
- Parajuli, S.P.; Zobeck, T.M.; Kocurek, G.; Yang, Z.; Stenchikov, G.L. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments. J. Geophys. Res. Atmos. 2016, 121, 1776–1792. [Google Scholar] [CrossRef]
- Kontos, S.; Liora, N.; Giannaros, C.; Kakosimos, K.; Poupkou, A.; Melas, D. Modeling natural dust emissions in the central Middle East: Parameterizations and sensitivity. Atmos. Environ. 2018, 190, 294–307. [Google Scholar] [CrossRef]
- Rezaei, M.; Mielonen, T.; Farajzadeh, M. Climatology of atmospheric dust corridors in the Middle East based on satellite data. Atmos. Res. 2022, 280, 106454. [Google Scholar] [CrossRef]
- Hermida, L.; Merino, A.; Sánchez, J.; Fernández-González, S.; García-Ortega, E.; López, L. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula. Atmos. Res. 2018, 199, 29–39. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Karami, S.; Kaskaoutis, D.G.; Tegen, I.; Moradi, M.; Opp, C. Atmospheric Dynamics and Numerical Simulations of Six Frontal Dust Storms in the Middle East Region. Atmosphere 2021, 12, 125. [Google Scholar] [CrossRef]
- Ali, A.; Nichol, J.E.; Bilal, M.; Qiu, Z.; Mazhar, U.; Wahiduzzaman; Almazroui, M.; Islam, M.N. Classification of aerosols over Saudi Arabia from 2004–2016. Atmos. Environ. 2020, 241, 117785. [Google Scholar] [CrossRef]
- Logothetis, S.-A.; Salamalikis, V.; Kazantzidis, A. Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET Version 3. Atmos. Res. 2020, 239, 104893. [Google Scholar] [CrossRef]
- Xu, X.; Xie, L.; Yang, X.; Wu, H.; Cai, L.; Qi, P. Aerosol optical properties at seven AERONET sites over Middle East and Eastern Mediterranean Sea. Atmos. Environ. 2020, 243, 117884. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Alizadeh, O.; Khoshsima, M.; Pierleoni, A. Aerosol properties, trends and classification of key types over the middle-east using satellite-derived atmospheric optical datasets. Atmos. Environ. 2021, 246, 118100. [Google Scholar] [CrossRef]
- Osipov, S.; Stenchikov, G.; Brindley, H.; Banks, J. Diurnal cycle of the dust instantaneous direct radiative forcing over the arabian peninsula. Atmos. Chem. Phys. 2015, 15, 9537–9553. [Google Scholar] [CrossRef]
- Lu, S.; Zhu, G.; Meng, G.; Lin, X.; Liu, Y.; Qiu, D.; Xu, Y.; Wang, Q.; Chen, L.; Li, R.; et al. Influence of atmospheric circulation on the stable isotope of precipitation in the monsoon margin region. Atmos. Res. 2024, 298, 107131. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Houssos, E.; Solmon, F.; Legrand, M.; Rashki, A.; Dumka, U.; Francois, P.; Gautam, R.; Singh, R. Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall. Atmos. Res. 2018, 201, 189–205. [Google Scholar] [CrossRef]
- Wang, M.; Lau, W.K.M.; Wang, J. Impact of middle east dust on subseasonal-to-seasonal variability of the Asian summer monsoon. Clim. Dyn. 2021, 57, 37–54. [Google Scholar] [CrossRef]
- Bayat, F.; Khalesifard, H.R. Characterization of released dust over open waters in the south of the Iran Plateau based on satellite and ground-based measurements. Atmos. Pollut. Res. 2021, 12, 101208. [Google Scholar] [CrossRef]
- Masoumi, A.; Moradhaseli, R. Spatio-temporal classification of dust source activities affecting the Khuzestan region, based on CALIPSO-CALIOP data and atmospheric models. Atmos. Res. 2023, 287, 106702. [Google Scholar] [CrossRef]
- Lin, Y.; Tian, P.; Tang, C.; Pang, S.; Zhang, L. Combining CALIPSO and AERONET data to classify aerosols globally. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Mashat, A.-W.S.; Awad, A.M.; Assiri, M.E.; Labban, A.H. Dynamic and synoptic study of spring dust storms over northern Saudi Arabia. Theor. Appl. Clim. 2020, 140, 619–634. [Google Scholar] [CrossRef]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. Numerical simulation of dust events in the Middle East. Aeolian Res. 2014, 13, 59–70. [Google Scholar] [CrossRef]
- Beegum, S.N.; Gherboudj, I.; Chaouch, N.; Couvidat, F.; Menut, L.; Ghedira, H. Simulating aerosols over Arabian Peninsula with CHIMERE: Sensitivity to soil, surface parameters and anthropogenic emission inventories. Atmos. Environ. 2016, 128, 185–197. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Alam, K.; Ranjbar, A. Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeolian Res. 2021, 50, 100679. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Tegen, I.; Harrison, S.P.; Kohfeld, K.; Prentice, I.C.; Coe, M.; Heimann, M. Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res. Atmos. 2002, 107, AAC-14. [Google Scholar] [CrossRef]
- Parajuli, S.P.; Stenchikov, G.L.; Ukhov, A.; Kim, H. Dust emission modeling using a new high-resolution dust source function in WRF-chem with implications for air quality. J. Geophys. Res. Atmos. 2019, 124, 10109–10133. [Google Scholar] [CrossRef]
- Mostamandi, S.; Ukhov, A.; Engelbrecht, J.; Shevchenko, I.; Osipov, S.; Stenchikov, G. Fine and Coarse Dust Effects on Radiative Forcing, Mass Deposition, and Solar Devices Over the Middle East. J. Geophys. Res. Atmos. 2023, 128, e2023JD039479. [Google Scholar] [CrossRef]
- Kok, J.F.; Albani, S.; Mahowald, N.M.; Ward, D.S. An improved dust emission model—Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos. Chem. Phys. 2014, 14, 13043–13061. [Google Scholar] [CrossRef]
- Basart, S.; Vendrell, L.; Baldasano, J. High-resolution dust modelling over complex terrains in West Asia. Aeolian Res. 2016, 23, 37–50. [Google Scholar] [CrossRef]
- Nabavi, S.O.; Haimberger, L.; Samimi, C. Sensitivity of WRF-chem predictions to dust source function specification in West Asia. Aeolian Res. 2017, 24, 115–131. [Google Scholar] [CrossRef]
- Li, L.; Mahowald, N.M.; Kok, J.F.; Liu, X.; Wu, M.; Leung, D.M.; Hamilton, D.S.; Emmons, L.K.; Huang, Y.; Sexton, N.; et al. Importance of different parameterization changes for the updated dust cycle modeling in the Community Atmosphere Model (version 6.1). Geosci. Model Dev. 2022, 15, 8181–8219. [Google Scholar] [CrossRef]
- Prakash, P.J.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2015, 15, 199–222. [Google Scholar] [CrossRef]
- Cowie, S.M.; Marsham, J.H.; Knippertz, P. The importance of rare, high-wind events for dust uplift in northern Africa. Geophys. Res. Lett. 2015, 42, 8208–8215. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Notaro, M.; Liu, Z.; Wang, F.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Climatic controls on the interannual to decadal variability in Saudi Arabian dust activity: Toward the development of a seasonal dust prediction model. J. Geophys. Res. Atmos. 2015, 120, 1739–1758. [Google Scholar] [CrossRef]
- Leung, D.M.; Kok, J.F.; Li, L.; Okin, G.S.; Prigent, C.; Klose, M.; Pérez García-Pando, C.; Menut, L.; Mahowald, N.M.; Lawrence, D.M.; et al. A new process-based and scale-aware desert dust emission scheme for global climate models—Part I: Description and evaluation against inverse modeling emissions. Atmos. Chem. Phys. 2023, 23, 6487–6523. [Google Scholar] [CrossRef]
- Leung, D.M.; Kok, J.F.; Li, L.; Mahowald, N.M.; Lawrence, D.M.; Tilmes, S.; Kluzek, E.; Klose, M.; Pérez García-Pando, C. A new process-based and scale-aware desert dust emission scheme for global climate models—Part II: Evaluation in the Community Earth System Model version 2 (CESM2). Atmos. Chem. Phys. 2024, 24, 2287–2318. [Google Scholar] [CrossRef]
- Beegum, S.N.; Gherboudj, I.; Chaouch, N.; Temimi, M.; Ghedira, H. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula. Atmos. Res. 2018, 199, 62–81. [Google Scholar] [CrossRef]
- de Meij, A.; Lelieveld, J. Evaluating aerosol optical properties observed by ground-based and satellite remote sensing over the Mediterranean and the Middle East in 2006. Atmos. Res. 2011, 99, 415–433. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Kalashnikova, O.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 2013, 118, 13253–13264. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Aldabash, M. Long-term AOD trend assessment over the Eastern Mediterranean region: A comparative study including a new merged aerosol product. Atmos. Environ. 2020, 238, 117736. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Yousefi, R.; Wang, F.; Ge, Q.; Kaskaoutis, D.G.; Wang, J.; Alpert, P.; Munawar, I. Spatio-temporal changes of spring-summer dust AOD over the Eastern Mediterranean and the Middle East: Reversal of dust trends and associated meteorological effects. Atmos. Res. 2023, 281, 106509. [Google Scholar] [CrossRef]
- Samman, A.E.; Butt, M.J. Aerosol Types and Their Climatology over the Dust Belt Region. Atmosphere 2023, 14, 1610. [Google Scholar] [CrossRef]
Model | Meteorological Driver | Meteorological Initial Condition | Horizontal Resolution | Vertical Resolution | Transport Size Bins | Data Assimilation |
---|---|---|---|---|---|---|
ALADIN-Dust | ALADIN | ARPEGE | 25 km × 25 km | 70 σ-layers | 3 bins (0.078–5 μm) | No |
ICON-ART | DWD | ICON-ART Global | 40 km global | 90 (global) and 60 (nest) Smooth Level Vertical SLEVE coordinate [88] | 3-log-normal modes for mass and number concentration | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karami, S.; Kaskaoutis, D.G.; Pytharoulis, I.; Sotiropoulou, R.-E.P.; Tagaris, E. Dust Transport from North Africa to the Middle East: Synoptic Patterns and Numerical Forecast. Atmosphere 2024, 15, 531. https://doi.org/10.3390/atmos15050531
Karami S, Kaskaoutis DG, Pytharoulis I, Sotiropoulou R-EP, Tagaris E. Dust Transport from North Africa to the Middle East: Synoptic Patterns and Numerical Forecast. Atmosphere. 2024; 15(5):531. https://doi.org/10.3390/atmos15050531
Chicago/Turabian StyleKarami, Sara, Dimitris G. Kaskaoutis, Ioannis Pytharoulis, Rafaella-Eleni P. Sotiropoulou, and Efthimios Tagaris. 2024. "Dust Transport from North Africa to the Middle East: Synoptic Patterns and Numerical Forecast" Atmosphere 15, no. 5: 531. https://doi.org/10.3390/atmos15050531
APA StyleKarami, S., Kaskaoutis, D. G., Pytharoulis, I., Sotiropoulou, R.-E. P., & Tagaris, E. (2024). Dust Transport from North Africa to the Middle East: Synoptic Patterns and Numerical Forecast. Atmosphere, 15(5), 531. https://doi.org/10.3390/atmos15050531