Influence of Spring Precipitation over Maritime Continent and Western North Pacific on the Evolution and Prediction of El Niño–Southern Oscillation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spring Precipitation Patterns over MC and WNP
3.2. Linkages between Spring MC Precipitation and ENSO Evolution in Subsequent Seasons
3.3. Connections between Spring WNP Precipitation and ENSO Evolution
3.4. Spring Precursors of ENSO Events
3.5. A Simple Statistical Model for Predicting ENSO
3.6. Practical Utility of the Established Model
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Philander, S.G.H.; Yamagata, T.; Pacanowski, R.C. Unstable Air-Sea Interactions in the Tropics. J. Atmos. Sci. 1984, 41, 604–613. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Ramage, C.S. Role of a tropical “maritime continent” in the atmospheric circulation. Mon. Weather Rev. 1968, 96, 365–370. [Google Scholar] [CrossRef]
- Philander, S.G.H. El Nino southern oscillation phenomena. Nature 1983, 302, 295–301. [Google Scholar] [CrossRef]
- Hamada, J.I.; Yamanaka, D.M.; Matsumoto, J.; Fukao, S.; Winarso, P.A.; Sribimawati, T. Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J. Meteorol. Soc. Jpn. Ser. II 2002, 80, 285–310. [Google Scholar] [CrossRef]
- Chang, C.P.; Wang, Z.; Ju, J.H.; Li, T. On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter. J. Clim. 2004, 17, 665–672. [Google Scholar] [CrossRef]
- Liu, J.; Da, Y.; Li, T.; Hu, F. Impact of ENSO on MJO Pattern Evolution over the Maritime Continent. J. Meteorol. Res. 2020, 34, 1151–1166. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Wu, R.; Hu, Z.Z.; Kirtman, B.P. Evolution of ENSO-related rainfall anomalies in East Asia. J. Clim. 2003, 16, 3742–3758. [Google Scholar] [CrossRef]
- Dayem, K.E.; Noone, D.C.; Molnar, P. Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation. J. Geophys. Res. Atmos. 2007, 112, D06101. [Google Scholar] [CrossRef]
- McCreary, J.P.; Anderson, D.L.T. A simple model of El Nino and the Southern Oscillation. Mon. Weather Rev. 1984, 112, 934–946. [Google Scholar] [CrossRef]
- Suarez, M.J.; Schopf, P.S. A delayed action oscillator for ENSO. J. Atmos. Sci. 1988, 45, 3283–3287. [Google Scholar] [CrossRef]
- Battisti, D.S. Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci. 1988, 45, 2889–2919. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Vimont, D.J. Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Clim. 2004, 17, 4143–4158. [Google Scholar] [CrossRef]
- Xie, R.H.; Huang, F.; Ren, H. Subtropical air-sea interaction and development of central Pacific El Niño. J. Ocean Univ. China 2013, 12, 260–271. [Google Scholar] [CrossRef]
- Ding, R.Q.; Li, J.P.; Tseng, Y.H.; Cheng, S.; Guo, Y.P. The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res. Atmos. 2015, 120, 27–45. [Google Scholar] [CrossRef]
- Ding, R.Q.; Li, J.P.; Tseng, Y.H.; Xie, F. Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J. Geophys. Res. Atmos. 2017, 122, 279–298. [Google Scholar] [CrossRef]
- Wu, B.; Li, T.; Zhou, T. Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Clim. 2010, 23, 4807–4822. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Timmermann, A.; Jin, F.F.; McGregor, S.; Ren, H.L. A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci. 2013, 6, 540–544. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Jin, F.F.; Timmermann, A.; McGregor, S. Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Clim. 2015, 28, 1093–1111. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Jin, F.F.; Stuecker, M.F.; Turner, A.G.; Klingaman, N.P. The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO zonal structure. J. Clim. 2015, 28, 5795–5812. [Google Scholar] [CrossRef]
- Furtado, J.C.; Anderson, B.T.; Schneider, N. Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Clim. Dyn. 2012, 39, 2833–2846. [Google Scholar] [CrossRef]
- Park, J.Y.; Yeh, S.W.; Kug, J.S.; Yoon, J. Favorable connections between seasonal footprinting mechanism and El Niño. Clim. Dyn. 2013, 40, 1169–1181. [Google Scholar] [CrossRef]
- You, Y.; Furtado, J.C. The South Pacific Meridional Mode and Its Role in Tropical Pacific Climate Variability. J. Clim. 2018, 31, 10141–10163. [Google Scholar] [CrossRef]
- Amaya, D.J. The Pacific meridional mode and ENSO: A review. Curr. Clim. Change Rep. 2019, 5, 296–307. [Google Scholar] [CrossRef]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar]
- Zhao, J.; Kug, J.S.; Park, J.H.; An, S.I. Diversity of North Pacific Meridional Mode and its distinct impacts on El Niño-Southern Oscillation. Geophys. Res. Lett. 2020, 47, e2020GL088993. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, S.Y.; Amaya, D.J.; Kosaka, Y.; Larson, S.M.; Wang, X.D.; Jun, C.Y. Pacific meridional modes without equatorial pacific influence. J. Clim. 2021, 34, 5285–5301. [Google Scholar] [CrossRef]
- Wang, C.; Weisberg, R.H.; Virmani, J.I. Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J. Geophys. Res. 1999, 104, 5131–5149. [Google Scholar] [CrossRef]
- Wang, C. A review of ENSO theories. Nat. Sci. Rev. 2018, 5, 813–825. [Google Scholar] [CrossRef]
- McGregor, S.; Timmermann, A.; Schneider, N.; Stuecker, M.F.; England, M.H. The effect of the South Pacific Convergence Zone on the termination of El Nino events and the meridional asymmetry of ENSO. J. Clim. 2012, 25, 5566–5586. [Google Scholar] [CrossRef]
- McGregor, S.; Ramesh, N.; Spence, P.; England, M.H.; McPhaden, M.J.; Santoso, A. Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys. Res. Lett. 2013, 40, 749–754. [Google Scholar] [CrossRef]
- McGregor, S.; Spence, P.; Schwarzkopf, F.U.; England, M.H.; Santoso, A.; Kessler, W.S.; Timmermann, A.; Böning, C.W. ENSO-driven interhemispheric Pacific mass transports. J. Geophys. Res. Ocean 2014, 119, 6221–6237. [Google Scholar] [CrossRef]
- Abellán, E.; McGregor, S. The role of the southward wind shift in both the seasonal synchronization and duration of ENSO events. Clim. Dyn. 2016, 47, 509–527. [Google Scholar] [CrossRef]
- Xie, R.H.; Mu, M.; Fang, X. New indices for better understanding ENSO by incorporating convection sensitivity to sea surface temperature. J. Clim. 2020, 33, 7045–7061. [Google Scholar] [CrossRef]
- Gong, Y.; Li, T. Mechanism for Southward Shift of Zonal Wind Anomalies during the Mature Phase of ENSO. J. Clim. 2021, 34, 8897–8911. [Google Scholar] [CrossRef]
- Jin, F.F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 1997, 54, 811–829. [Google Scholar] [CrossRef]
- Jin, F.F. An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci. 1997, 54, 830–847. [Google Scholar] [CrossRef]
- Meinen, C.S.; McPhaden, M.J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Clim. 2000, 13, 3551–3559. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Hu, Z.Z.; Ding, R.Q.; Chen, H.C. An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Clim. Dyn. 2017, 48, 2025–2044. [Google Scholar] [CrossRef]
- Kug, J.S.; Jin, F.F.; And, S.I. Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Chen, H.C.; Hu, Z.Z.; Huang, B.H.; Sui, C.H. The role of reversed equatorial zonal transport in terminating an ENSO event. J. Clim. 2016, 29, 5859–5877. [Google Scholar] [CrossRef]
- Ren, H.L.; Lu, B.; Wan, J.H.; Tian, B.; Zhang, P.Q. Identification standard for ENSO events and its application to climate monitoring and prediction in China. J. Meteorol. Res. 2018, 32, 923–936. [Google Scholar] [CrossRef]
- Guan, C.; McPhaden, M.J.; Wang, F.; Hu, S. Quantifying the role of oceanic feedbacks on ENSO asymmetry. Geophys. Res. Lett. 2019, 46, 2140–2148. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.J.; Li, S. Impacts of tropical Indian and Atlantic Ocean warming on the occurrence of the 2017/2018 La Niña. Geophys. Res. Lett. 2019, 46, 3435–3445. [Google Scholar] [CrossRef]
- Ren, H.L.; Jin, F.F. Recharge oscillator mechanisms in two types of ENSO. J. Clim. 2013, 26, 6506–6523. [Google Scholar] [CrossRef]
- Jin, F.-F.; An, S.I. Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett. 1999, 26, 2989–2992. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeor. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.S.; Yang, S.; Hnilo, J.J.; Fiorino, M.; Potter, G. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Behringer, D.; Xue, Y. Evaluation of the Global Ocean Data Assimilation system at NCEP: The Pacific Ocean. In Proceedings of the Eighth Symposium on Integrated Observing and Assimilation System for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convection and Trade Center, Seattle, DC, USA, 11–15 January 2004. [Google Scholar]
- Rasmusson, E.M.; Carpenter, T.H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Smith, C.; Wallace, J.M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 1992, 5, 541–560. [Google Scholar] [CrossRef]
- Wallace, J.M.; Smith, C.; Bretherton, C.S. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Clim. 1992, 5, 561–576. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Tzanis, C.G.; Sarlis, N.V. On the progress of the 2015–2016 El Niño event, Atmos. Chem. Phys. 2016, 16, 2007–2011. [Google Scholar]
- Chen, L.; Li, T.; Wang, B.; Wang, L. Formation mechanism for 2015/16 super El Niño. Sci. Rep. 2017, 7, 2975. [Google Scholar] [CrossRef] [PubMed]
- L’Heureux, M.L.; Takahashi, K.; Watkins, A.B.; Barnston, A.G.; Becker, E.J.; Di Liberto, T.E.; Gamble, F.; Gottschalck, J.; Halpert, M.S.; Huang, B.; et al. Observing and Predicting the 2015/16 El Niño. Bull. Am. Meteorol. Soc. 2017, 98, 1363–1382. [Google Scholar] [CrossRef]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- Zhai, P.; Yu, R.; Guo, Y.; Li, Q.; Ren, X.; Wang, Y.; Xu, W.; Liu, Y.; Ding, Y. The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J. Meteorol. Res. 2016, 30, 283–297. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- Okumura, Y.M. ENSO Diversity from an Atmospheric Perspective. Curr. Clim. Change Rep. 2019, 5, 245–257. [Google Scholar] [CrossRef]
- Kessler, W.S.; McPhaden, M.J. Oceanic equatorial waves and the 1991–93 El Niño. J. Clim. 1995, 8, 1757–1774. [Google Scholar] [CrossRef]
- Hu, S.; Fedorov, A.V. Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Clim. Change 2019, 9, 747–751. [Google Scholar] [CrossRef]
- Pegion, K.; Alexander, M. The seasonal footprinting mechanism in CFSv2: Simulation and impact on ENSO prediction. Clim. Dyn. 2013, 41, 1671–1683. [Google Scholar] [CrossRef]
- Pegion, K.V.; Selman, C.M. Extratropical precursors of the El Niño–Southern Oscillation. In Climate Extremes: Patterns and Mechanisms, 1st ed.; Wang, S., Yoon, J., Funk, C., Gillies, R., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 299–314. [Google Scholar]
- Gong, Y.; Li, T. Comparison of southward shift mechanisms of equatorial westerly anomalies between EP and CP El Niño. Clim. Dyn. 2023, 60, 785–796. [Google Scholar] [CrossRef]
- Kug, J.-S.; Kang, I.S.; An, S.I. Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J. Geophys. Res. 2003, 108, 3284. [Google Scholar] [CrossRef]
- Hu, Z.; Kumar, A.; Huang, B.; Zhu, J.; Zhang, R.; Jin, F. Asymmetric evolution of El Niño and La Niña: The recharge/discharge processes and role of the off-equatorial sea surface height anomaly. Clim. Dyn. 2017, 49, 2737–2748. [Google Scholar] [CrossRef]
- Lai, A.W.C.; Herzog, M.; Graf, H.F. ENSO forecasts near the spring predictability barrier and possible reasons for the recently reduced predictability. J. Clim. 2018, 31, 815–838. [Google Scholar]
- Xuan, Z.L.; Zhang, W.J.; Jiang, F.; Jin, F.F. Effective ENSO amplitude forecasts based on oceanic and atmospheric preconditions. J. Clim. 2022, 35, 3279–3291. [Google Scholar] [CrossRef]
- Varotsos, C.; Sarlis, N.V.; Mazei, Y.; Saldaev, D.; Efstathiou, M. A Composite Tool for Forecasting El Niño: The Case of the 2023–2024 Event. Forecasting 2024, 6, 187–203. [Google Scholar] [CrossRef]
- Karamperidou, C.; Cane, M.A.; Lall, U.; Wittenberg, A.T. Intrinsic modulation of ENSO predictability viewed through a local Lyapunov lens. Clim. Dyn. 2014, 42, 253–270. [Google Scholar] [CrossRef]
- Hou, Z.; Li, J.; Ding, R.; Karamperidou, C.; Duan, W.; Liu, T.; Feng, J. Asymmetry of the predictability limit of the warm ENSO phase. Geophys. Res. Lett. 2018, 45, 7646–7653. [Google Scholar] [CrossRef]
- Elsner, J.B.; Schmertmann, C.P. Assessing forecast skill through cross validation. Wea. Forecast. 1994, 9, 619–624. [Google Scholar] [CrossRef]
- Seleznev, A.; Mukhin, D. Improving statistical prediction and revealing nonlinearity of ENSO using observations of ocean heat content in the tropical Pacific. Clim. Dyn. 2023, 60, 1–15. [Google Scholar] [CrossRef]
- Su, J.Z.; Xiang, B.; Wang, B.; Li, T. Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett. 2014, 41, 9058–9064. [Google Scholar] [CrossRef]
- Yu, S.; Fedorov, A. The role of westerly wind bursts during different seasons versus ocean heat recharge in the development of extreme El Niño in climate models. Geophys. Res. Lett. 2020, 47, e2020GL088381. [Google Scholar] [CrossRef]
- Tao, L.J.; Zhang, R.H.; Gao, C. Initial error-induced optimal perturbations in ENSO predictions, as derived from an intermediate coupled model. Adv. Atmos. Sci. 2017, 34, 791–803. [Google Scholar] [CrossRef]
- Larson, S.M.; Kirtman, B.P. Drivers of coupled model ENSO error dynamics and the spring predictability barrier. Clim. Dyn. 2017, 48, 3631–3644. [Google Scholar] [CrossRef]
Precipitation (PR) Groups | Criteria | Individual ENSO Events in Spring |
---|---|---|
high MC PR group | PRPC1 < −0.8 | 1984 *, 1985, 1989, 1999 *, 2000 *, 2001, 2006, 2008, 2009, 2011 |
low MC PR group | PRPC1 > 0.8 | 1983 *, 1987, 1992, 1993, 1998 *, 2010, 2015 *, 2016, 2019 |
high WNP PR group | PRPC2 < −0.8 | 1980, 1982, 1991, 1997, 2002, 2015 *, 2018 |
low WNP PR group | PRPC2 > 0.8 | 1983 *, 1984 *, 1998 *, 1999 *, 2000 * |
Precipitation (PR) Groups | Criteria | Individual ENSO Event in Spring |
---|---|---|
high MC PR group | PRPC1 < −0.8 | 1984, 1985, 1989, 1999, 2000, 2001, 2006, 2008, 2009, 2011 |
low MC PR group | PRPC1 > 0.8 | 1983, 1987, 1992, 1998, 2010, 2016, 2019 |
high WNP PR group | PRPC2 < −0.8 | 1980, 1982, 1991, 1997, 2002, 2015, 2018 |
ENSO Phase | a (°C mm−1) | b (°C mm−1) | c (°C∙1011m−3) | d (°C∙s∙m−1) |
---|---|---|---|---|
El Niño | −0.13 | 0.32 | −1.1 × 10−15 | 3.8 |
La Niña | −0.01 | −0.03 | 3.49 × 10−15 | −0.47 |
El Niño Years | a (°C∙mm−1) | b (°C∙mm−1) | c (°C∙1011m−3) | d (°C∙s∙m−1) | Niño-3.4 (°C) |
---|---|---|---|---|---|
1982/83 | −0.28 | 0.35 | −3.33 × 10−15 | 4.63 | 1.02 |
1986/87 | −0.23 | 0.33 | −2.22 × 10−15 | 4.44 | −0.35 |
1987/88 | −0.05 | 0.36 | −0.73 × 10−15 | 4.03 | 0.38 |
1991/92 | −0.13 | 0.30 | −0.99 × 10−15 | 3.8 | 1.30 |
1994/95 | −0.13 | 0.30 | −0.72 × 10−15 | 3.72 | 0.08 |
1997/98 | −0.16 | 0.31 | −0.79 × 10−15 | 4.01 | 2.34 |
2002/03 | −0.13 | 0.32 | −1.17 × 10−15 | 3.87 | 0.82 |
2004/05 | −0.14 | 0.34 | −1.78 × 10−15 | 3.89 | 1.02 |
2006/07 | −0.09 | 0.29 | −1.31 × 10−15 | 4.26 | 1.25 |
2009/10 | −0.13 | 0.32 | −0.97 × 10−15 | 3.62 | 1.48 |
2014/15 | −0.14 | 0.23 | 0.99 × 10−15 | 2.86 | 1.27 |
2015/16 | 0.01 | 0.22 | 0.66 × 10−15 | 2.68 | 1.49 |
2018/19 | −0.09 | 0.42 | −1.22 × 10−15 | 3.61 | 1.54 |
La Niña Years | a (°C mm−1) | b (°C mm−1) | c (°C∙1011m−3) | d (°C∙s∙m−1) | Niño-3.4 (°C) |
---|---|---|---|---|---|
1983/84 | −0.09 | −0.07 | 3.49 × 10−15 | −0.25 | −0.13 |
1984/85 | −0.15 | −0.01 | 3.33 × 10−15 | −0.09 | −1.18 |
1988/89 | −0.12 | −0.04 | 2.79 × 10−15 | 0.03 | −1.09 |
1995/96 | −0.08 | −0.14 | 3.79 × 10−15 | −0.12 | −1.07 |
1998/99 | −0.01 | −0.04 | 3.83 × 10−15 | −0.35 | −1.42 |
1999/00 | −0.01 | −0.06 | 3.19 × 10−15 | −0.28 | −1.06 |
2000/01 | −0.04 | −0.04 | 3.32 × 10−15 | −0.40 | −0.56 |
2005/06 | −0.06 | −0.05 | 3.4 × 10−15 | −0.27 | −0.51 |
2007/08 | −0.08 | −0.04 | 3.13 × 10−15 | −0.16 | −0.98 |
2008/09 | −0.07 | −0.05 | 3.35 × 10−15 | −0.22 | −0.34 |
2010/11 | 0.01 | −0.05 | 3.57 × 10−15 | −0.63 | −0.83 |
2011/12 | −0.06 | −0.05 | 3.41 × 10−15 | −0.23 | −0.44 |
2017/18 | −0.10 | −0.05 | 3.22 × 10−15 | −0.09 | −0.09 |
2020/21 | −0.08 | −0.06 | 3.32 × 10−15 | −0.15 | −0.83 |
2021/22 | −0.08 | −0.05 | 3.32 × 10−15 | −0.14 | −0.29 |
2022/23 | −0.07 | −0.01 | 3.04 × 10−15 | −0.15 | −0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Huang, F.; Xie, R. Influence of Spring Precipitation over Maritime Continent and Western North Pacific on the Evolution and Prediction of El Niño–Southern Oscillation. Atmosphere 2024, 15, 584. https://doi.org/10.3390/atmos15050584
Ma Y, Huang F, Xie R. Influence of Spring Precipitation over Maritime Continent and Western North Pacific on the Evolution and Prediction of El Niño–Southern Oscillation. Atmosphere. 2024; 15(5):584. https://doi.org/10.3390/atmos15050584
Chicago/Turabian StyleMa, Yifan, Fei Huang, and Ruihuang Xie. 2024. "Influence of Spring Precipitation over Maritime Continent and Western North Pacific on the Evolution and Prediction of El Niño–Southern Oscillation" Atmosphere 15, no. 5: 584. https://doi.org/10.3390/atmos15050584
APA StyleMa, Y., Huang, F., & Xie, R. (2024). Influence of Spring Precipitation over Maritime Continent and Western North Pacific on the Evolution and Prediction of El Niño–Southern Oscillation. Atmosphere, 15(5), 584. https://doi.org/10.3390/atmos15050584