Airborne Culturable Fungi in the Indoor and Outdoor Environments of Shrines in Chennai, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Air Sampling
2.3. Data Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baxi, S.N.; Portnoy, J.M.; Larenas-Linnemann, D.; Phipatanakul, W.; Barnes, C.; Baxi, S.; Scott, J.; Williams, P.B. Exposure and health effects of fungi on humans. J. Allergy Clin. Immunol. Pract. 2016, 4, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Dott, W. Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch. Microbiol. 2003, 179, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Ekwomadu, T.; Mwanza, M.; Musekiwa, A. Mycotoxin-linked mutations and cancer risk: A global health issue. Int. J. Environ. Res. Public Health 2022, 19, 7754. [Google Scholar] [CrossRef] [PubMed]
- Habschied, K.; Kanižai Šarić, G.; Krstanović, V.; Mastanjević, K. Mycotoxins—Biomonitoring and human exposure. Toxins 2021, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Adaku Chilaka, C.; Mally, A. Mycotoxin occurrence, exposure and health implications in infants and young children in Sub-Saharan Africa: A review. Foods 2020, 9, 1585. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Usman, M.; Scholz, M. Biodeterioration of buildings and public health implications caused by indoor air pollution. Indoor Built Environ. 2018, 27, 752–765. [Google Scholar] [CrossRef]
- Rojas, T.I.; Aira, M.J.; Batista, A.; Cruz, I.L.; González, S. Fungal biodeterioration in historic buildings of Havana (Cuba). Grana 2012, 51, 44–51. [Google Scholar] [CrossRef]
- Al-Gharawi, H.J.; Jeaz, E.T. Isolation and identification of contaminated fungi of books and manuscripts in the libraries of a number of Iraqi universities and holy sites. Plant Arch. 2019, 19, 2359–2362. [Google Scholar]
- Mohammed, B.T.; Dakhil, M.H.; Lmutairy, T. Manuscripts preserved at the Al-Hussein Holy shrine: Isolation and diagnosis of fungi causing potential damage. Indian J. Ecol. 2018, 45, 214–221. [Google Scholar]
- Grbić, M.L.; Dimkić, I.; Savković, Ž.; Stupar, M.; Knežević, A.; Jelikić, A.; Unković, N. Mycobiome Diversity of the Cave Church of Sts. Peter and Paul in Serbia—Risk Assessment Implication for the Conservation of Rare Cavern Habitat Housing a Peculiar Fresco Painting. J. Fungi 2022, 8, 1263. [Google Scholar] [CrossRef]
- Chmiel, M.; Kral, I.; Lenart-Boroń, A. Concentration and size distribution of microbial aerosol in the historical objects in Kraków as a potential health risk and biodeterioration factor. Aerobiologia 2019, 35, 743–758. [Google Scholar] [CrossRef]
- Rasli, N.B.I.; Ramli, N.A.; Ismail, M.R.; Shith, S.; Yusof, N.F.F.M.; Zainordin, N.S.; El-Bayoumi, M.; Nazir, A.U.M. Effects of hoovering activities on biological contaminants and particulate matter levels in main prayer halls of Malaysian mosques. Curr. World Environ. 2017, 14, 134. [Google Scholar]
- Hong, J.Y.; Kim, Y.H.; Lee, J.M.; Kim, S.J.; Jo, C.W.; Park, J.H. Seasonal distribution and diversity of airborne fungi in a wooden cultural heritage site: A case study of the Seonamsa temple, Suncheon. Korean J. Mycol. 2018, 46, 122–133. [Google Scholar]
- Mashat, B. Indoor and outdoor microbial aerosols at the holy mosque: A case study. Atmos. Pollut. Res. 2015, 6, 990–996. [Google Scholar] [CrossRef]
- Adams, R.I.; Bhangar, S.; Pasut, W.; Arens, E.A.; Taylor, J.W.; Lindow, S.E.; Nazaroff, W.W.; Bruns, T.D. Chamber bioaerosol study: Outdoor air and human occupants as sources of indoor airborne microbes. PLoS ONE 2015, 10, e0128022. [Google Scholar] [CrossRef]
- Srinivasan, B.; Sundaram, I.; Farshana, F.; Nyayiru Kannaian, U.P. A preliminary investigation on airborne fungi of pedestrian underpasses. Aerobiologia 2021, 37, 71–78. [Google Scholar] [CrossRef]
- Subramanian, C.V. Hyphomycetes; Indian Council of Agricultural Research: New Delhi, India, 1971; p. 930. [Google Scholar]
- Ellis, M.B. Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Surrey, UK, 1971; p. 507. [Google Scholar]
- Onions, A.H.S.; Allsopp, D.; Eggins, H.O.W. Smith’s. Introduction to Industrial Mycology, 7th ed.; Edward Arnold: London, UK, 1981; p. 372. [Google Scholar]
- Udayaprakash, N.K. Indoor Molds: Isolation and Identification; Color Wings (M) Pvt. Ltd.: Chennai, India, 2004; p. 99. [Google Scholar]
- Prakash, N.K.U.; Bhuvaneswari, S.; Ranjith Kumar, M.; Lankesh, S.; Rupesh, K. A study on the prevalence of indoor mycoflora in air-conditioned buses. Br. Microbiol. Res. J. 2014, 4, 282–292. [Google Scholar] [CrossRef]
- Fedor, P.; Zvaríková, M. Biodiversity indices. Encycl. Ecol. 2019, 2, 337–346. [Google Scholar]
- Kitikidou, K.; Milios, E.; Stampoulidis, A.; Pipinis, E.; Radoglou, K. Using Biodiversity Indices Effectively: Considerations for Forest Management. Ecologies 2024, 5, 42–51. [Google Scholar] [CrossRef]
- Bandeira, B.; Jamet, J.L.; Jamet, D.; Ginoux, J.M. Mathematical convergences of biodiversity indices. Ecol. Indic. 2013, 29, 522–528. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: London, UK, 2004. [Google Scholar]
- Archetypalecology. Biodiversity. Indices, Concepts and R Implementations (In Progress). 2018. Available online: https://archetypalecology.wordpress.com/2018/02/20/biodiversity-indices-concepts-and-r-implementations-in-progress/ (accessed on 8 January 2024).
- Mehta, S.; Kambli, P.; Wani, K.; Tanavde, S.; Mirgal, S.; Kelkar-Mane, V.; Kumar, R. Study of bio-aerosols in a prominent temple in Mumbai City, India. Int. J. Environ. Stud. 2013, 70, 583. [Google Scholar] [CrossRef]
- Nayak, B.K. A preliminary study of airborne fungal spores in few temples of Pondicherry. Int. J. PharmTech Res. 2015, 8, 300–305. [Google Scholar]
- Wüst, G.; Friedl, H.; Haas, D.; Köck, M.; Pichler-Semmelrock, F.; Reinthaler, F.; Schlacher, R.; Marth, E. A comparison between Andersen (ACFM) and Reuter Centrifugal Sampler (RCS-plus) for indoor sampling of airborne molds. Aerobiologia 2003, 19, 125–128. [Google Scholar] [CrossRef]
- Kang, Y.J.; Frank, J.F. Comparison of airborne microflora collected by the Andersen sieve sampler and RCS sampler in a dairy processing plant. J. Food Prot. 1989, 52, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Li, K.; Yin, L.; Yao, M.; Zhang, H.; Chen, L.; Zhou, M.; Chen, X. A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High Flow for measuring airborne bacteria and fungi concentrations. J. Aerosol. Sci. 2009, 40, 503–513. [Google Scholar] [CrossRef]
- Placencia, A.M.; Peeler, J.T.; Oxborrow, G.S.; Danielson, J.W. Comparison of bacterial recovery by Reuter centrifugal air sampler and slit-to-agar sampler. Appl. Environ. Microbiol. 1982, 44, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Bartlett, K.H.; Brauer, M.; Stephens, G.M.; Black, W.A.; Teschke, K. A field comparison of four samplers for enumerating fungal aerosols I. Sampling characteristics. Indoor Air 2004, 14, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Bonadonna, L.; Marconi, A. A comparison of two air samplers for recovery of indoor bioaerosols. Aerobiologia 1994, 10, 153–156. [Google Scholar] [CrossRef]
- Smid, T.; Schokkin, E.; Boleij, J.S.; Heederik, D. Enumeration of viable fungi in occupational environments: A comparison of samplers and media. Am. Ind. Hyg. Assoc. J. 1989, 50, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yao, M. Analysis of culturable bacterial and fungal aerosol diversity obtained using different samplers and culturing methods. Aerosol Sci. Technol. 2011, 45, 1143–1153. [Google Scholar] [CrossRef]
- Pavan, R.; Manjunath, K. Qualitative analysis of indoor and outdoor airborne fungi in cowshed. J. Mycol. 2014, 2014, 985921. [Google Scholar] [CrossRef]
- Micheluz, A.; Manente, S.; Prigione, V.; Tigini, V.; Varese, G.C.; Ravagnan, G. The effects of book disinfection to the airborne microbiological community in a library environment. Aerobiologia 2018, 34, 29–44. [Google Scholar] [CrossRef]
- Sivagnanasundaram, P.; Amarasekara, R.W.K.; Madegedara, R.M.D.; Ekanayake, A.; Magana-Arachchi, D.N. Assessment of airborne bacterial and fungal communities in selected areas of teaching hospital, Kandy, Sri Lanka. BioMed Res. Int. 2019, 2019, 7393926. [Google Scholar] [CrossRef]
- Schweer, K.E.; Jakob, B.; Liss, B.; Christ, H.; Fischer, G.; Vehreschild, M.J.G.T.; Cornely, O.A.; Vehreschild, J.J. Domestic mould exposure and invasive aspergillosis—Air sampling of Aspergillus spp. Spores in homes of hematological patients, a pilot study. Med. Mycol. 2016, 54, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Hurrass, J.; Heinzow, B.; Aurbach, U.; Bergmann, K.C.; Bufe, A.; Buzina, W.; Nowak, D.; Wiesmüller, G.A. Medical diagnostics for indoor mold exposure. Int. J. Hyg. Environ. Health 2017, 220, 305–328. [Google Scholar] [CrossRef]
- Liew, W.P.P.; Mohd-Redzwan, S. Mycotoxin: Its impact on gut health and microbiota. Front. Cell. Infect. Microbiol. 2018, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, A.; Täubel, M.; Hyvärinen, A. Indoor fungi: Companions and contaminants. Indoor Air 2015, 25, 125–156. [Google Scholar] [CrossRef] [PubMed]
- Korpi, A.; Järnberg, J.; Pasanen, A.L. Microbial volatile organic compounds. Crit. Rev. Toxicol. 2009, 39, 139–193. [Google Scholar] [CrossRef] [PubMed]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A. Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. J. Appl. Microbiol. 2020, 129, 212–232. [Google Scholar] [CrossRef]
- Sterflinger, K.; Pinzari, F. The revenge of time: Fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Environ. Microbiol. 2012, 14, 559–566. [Google Scholar] [CrossRef]
- Heseltine, E.; Rosen, J. (Eds.) WHO Guidelines for Indoor Air Quality: Dampness and Mould; WHO Regional Office: Geneva, Switzerland, 2009. [Google Scholar]
Species | INDOOR | OUTDOOR | ||||
---|---|---|---|---|---|---|
CFU/m3 | PC | PIF | CFU/m3 | PC | PIF | |
Zygomycota | ||||||
Circinella umbellata | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Cunninghamella echinulata | 1.08 | 0.14 | 1.72 | 0 | 0 | 0 |
C. elegans | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Lichtheimia corymbifera | 0.86 | 0.11 | 1.72 | 0 | 0 | 0 |
Mucor racemosus | 6.03 | 0.81 | 12.06 | 1.29 | 0.20 | 3.44 |
Rhizopus stolonifer | 0.65 | 0.09 | 1.72 | 0.43 | 0.07 | 1.72 |
Syncephalastrum racemosum | 0.22 | 0.03 | 1.72 | 3.02 | 0.46 | 3.44 |
Ascomycota | ||||||
Chaetomium globosum | 0.65 | 0.09 | 5.17 | 0.22 | 0.03 | 1.72 |
Chaetomium sp. | 0 | 0 | 0 | 0.43 | 0.07 | 3.44 |
Emericella nidulans | 12.07 | 1.62 | 53.44 | 18.97 | 2.88 | 32.75 |
Sporormiella intermedia | 0 | 0 | 0 | 0.43 | 0.07 | 1.72 |
Talaromycespurpureogenus | 0 | 0 | 0 | 0.22 | 0.03 | 1.72 |
Mitosporic fungi | ||||||
Coelomycetes | ||||||
Phoma glomerata | 1.29 | 0.17 | 1.72 | 1.29 | 0.20 | 1.72 |
Hyphomycetes | ||||||
Acremonium blochii | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
A. hyalinulum | 0 | 0 | 0 | 0.43 | 0.07 | 1.72 |
A. falciforme | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
A. strictum | 0.22 | 0.03 | 1.72 | 2.15 | 0.33 | 5.1 |
Alternaria alternata | 0.86 | 0.12 | 5.17 | 1.72 | 0.26 | 10.32 |
Arthrinium phaeospermum | 1.08 | 0.14 | 1.72 | 0 | 0 | 0 |
Aspergillus clavatus | 0 | 0 | 0 | 0.43 | 0.07 | 3.44 |
A. flavus | 341.39 | 45.73 | 79.31 | 309.9 | 46.99 | 74.13 |
A. fumigatus | 1.72 | 0.23 | 6.89 | 4.74 | 0.72 | 5.17 |
A. glaucus | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
A. japonicus | 9.69 | 1.30 | 17.24 | 12.06 | 1.84 | 20.68 |
A. nidulans | 2.37 | 0.32 | 6.89 | 9.69 | 1.47 | 6.89 |
A. niger | 172 | 23.03 | 82.75 | 149.1 | 22.61 | 89.65 |
A. ochraceous | 0.65 | 0.09 | 1.72 | 2.37 | 0.36 | 6.89 |
A. restrictus | 0.65 | 0.09 | 3.44 | 0.43 | 0.07 | 1.72 |
A. sydowii | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
A. tamarii | 5.17 | 0.69 | 17.24 | 2.37 | 0.36 | 5.17 |
A. terreus | 14.87 | 1.99 | 37.93 | 7.33 | 1.11 | 31.03 |
A. versicolor | 0 | 0 | 0 | 1.51 | 0.23 | 6.89 |
Aureobasidium pullulans | 2.80 | 0.38 | 8.62 | 1.29 | 0.20 | 10.34 |
Chrysonilia sitophila | 0.43 | 0.06 | 3.44 | 0.65 | 0.36 | 8.62 |
Chrysosporium pannorum | 0.22 | 0.03 | 1.72 | 1.94 | 0.29 | 1.72 |
C. tropicum | 0.86 | 0.12 | 1.72 | 0 | 0 | 0 |
Cladosporium chlorocephalum | 0 | 0 | 0 | 0.86 | 0.13 | 1.72 |
C. cladosporioides | 28.88 | 3.87 | 32.75 | 19.83 | 3.01 | 34.48 |
C. herbarum | 1.94 | 0.26 | 5.17 | 0.43 | 0.07 | 3.44 |
C. oxysporum | 1.08 | 0.14 | 1.72 | 1.72 | 0.26 | 3.44 |
C. sphaerospermum | 5.17 | 0.69 | 18.96 | 2.16 | 0.33 | 10.34 |
Curvularia brachyspora | 2.59 | 0.35 | 8.69 | 1.94 | 0.29 | 3.44 |
C. clavata | 1.51 | 0.20 | 10.34 | 3.66 | 0.56 | 10.34 |
C. eragrostidis | 0 | 0 | 0 | 1.51 | 0.23 | 3.44 |
C. lunata | 9.27 | 1.24 | 27.86 | 7.54 | 1.14 | 22.41 |
C. pallescens | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
C. pennisetti | 0 | 0 | 0 | 0.65 | 0.20 | 1.72 |
Drechslera australiensis | 2.37 | 0.32 | 10.34 | 2.16 | 0.33 | 10.34 |
D. halodes | 0.43 | 0.06 | 1.72 | 1.08 | 0.16 | 3.44 |
D. hawaiiensis | 0.43 | 0.06 | 3.44 | 0.22 | 0.03 | 1.72 |
Fusarium moniliforme | 0.43 | 0.06 | 3.44 | 0 | 0 | 0 |
F. oxysporum | 10.56 | 1.41 | 17.24 | 6.47 | 0.98 | 6.89 |
Geomyces pannorum | 1.29 | 0.17 | 1.72 | 0 | 0 | 0 |
Gilmaniella humicola | 0.43 | 0.06 | 1.72 | 1.29 | 0.20 | 3.44 |
Gilmaniella sp. | 0 | 0 | 0 | 0.65 | 0.10 | 1.72 |
Humicola grisea | 0.65 | 0.09 | 3.44 | 1.51 | 0.24 | 8.69 |
Memnoniella echinata | 0.43 | 0.06 | 1.72 | 0.22 | 0.03 | 1.72 |
Microsporum nanum | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Moniliella suaveolens | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Monodictys castaneae | 0.43 | 0.06 | 3.44 | 0.22 | 0.03 | 1.72 |
M. glauca | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
M. levis | 0 | 0 | 0 | 0.43 | 0.07 | 1.72 |
Nigrospora orzyae | 0 | 0 | 0 | 0.22 | 0.03 | 1.72 |
N. sphaerica | 0 | 0 | 0 | 1.08 | 0.17 | 1.72 |
Paecilomyces variotii | 1.51 | 0.20 | 3.44 | 0.22 | 0.07 | 3.44 |
Penicillium chrysogenum | 0.22 | 0.06 | 3.44 | 0.22 | 0.03 | 1.72 |
P. citrinum | 1.08 | 0.20 | 8.62 | 4.74 | 0.72 | 20.68 |
P. digitatum | 0.86 | 0.03 | 1.72 | 0.22 | 0.03 | 1.72 |
P. funiculosum | 1.08 | 0.14 | 6.89 | 2.16 | 0.33 | 6.89 |
P. oxalicum | 0.22 | 0.12 | 3.44 | 6.47 | 0.98 | 13.79 |
P. polonicum | 0 | 0 | 0 | 0.22 | 0.03 | 1.72 |
P. variabile | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
P. verruculosum | 0 | 0 | 0 | 0.65 | 0.10 | 3.44 |
Periconiella smilais | 0 | 0 | 0 | 0.43 | 0.07 | 1.72 |
Periconia byssoides | 0 | 0 | 0 | 0.22 | 0.03 | 1.72 |
Scolecobasidium humicola | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Scopulariopsis brevicaulis | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
S. brumptii | 0 | 0.03 | 1.72 | 0 | 0 | 0 |
Spegazzinia labulata | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Sporothrix schenckii | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Stachybotrys atra | 0 | 0 | 0 | 0.22 | 0.03 | 1.72 |
Thielaviopsis paradoxa | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Torula graminis | 0 | 0 | 0 | 0.22 | 0.03 | 1.72 |
Trichocladium canadense | 0.22 | 0.03 | 1.72 | 0 | 0 | 0 |
Trichoderma harzianum | 6.68 | 0.89 | 1.72 | 0 | 0 | 0 |
T. viride | 0.86 | 0.12 | 3.44 | 1.94 | 0.29 | 5.17 |
Trichometasphaeria holmii | 0 | 0 | 0 | 0.22 | 0.03 | 1.72 |
Trichophyton mentagrophytes | 0.43 | 0.06 | 1.72 | 0 | 0 | 0 |
Ulocladium botrytis | 0.22 | 0.03 | 1.72 | 0.22 | 0.03 | 1.72 |
U. chartarum | 0.43 | 0.06 | 1.72 | 0 | 0 | 0 |
Yeast colonies | 57.33 | 7.68 | 34.48 | 28.23 | 4.28 | 31.03 |
Non-sporulating colonies | 25.43 | 3.41 | 39.65 | 20.69 | 3.14 | 44.82 |
Biodiversity Index | Indoor | Outdoor |
---|---|---|
Simpson index of diversity | 0.7278 | 0.7222 |
Margalef index | 8.4661 | 7.7247 |
Pielou evenness index | 0.4639 | 0.4916 |
Berger–Parker Dominance (Reciprocal) | 2.1869 | 2.128 |
Sorenson coefficient | 0.6466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nannu Shankar, S.; Srinivasan, B.; Nyayiru Kannaian, U.P. Airborne Culturable Fungi in the Indoor and Outdoor Environments of Shrines in Chennai, India. Atmosphere 2024, 15, 754. https://doi.org/10.3390/atmos15070754
Nannu Shankar S, Srinivasan B, Nyayiru Kannaian UP. Airborne Culturable Fungi in the Indoor and Outdoor Environments of Shrines in Chennai, India. Atmosphere. 2024; 15(7):754. https://doi.org/10.3390/atmos15070754
Chicago/Turabian StyleNannu Shankar, Sripriya, Bhuvaneswari Srinivasan, and Udaya Prakash Nyayiru Kannaian. 2024. "Airborne Culturable Fungi in the Indoor and Outdoor Environments of Shrines in Chennai, India" Atmosphere 15, no. 7: 754. https://doi.org/10.3390/atmos15070754
APA StyleNannu Shankar, S., Srinivasan, B., & Nyayiru Kannaian, U. P. (2024). Airborne Culturable Fungi in the Indoor and Outdoor Environments of Shrines in Chennai, India. Atmosphere, 15(7), 754. https://doi.org/10.3390/atmos15070754