Optimizing Thermal Comfort in Urban Squares of Hot-Humid Regions: A Case Study Considering Tree Growth, Species, and Planting Intervals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Conditions
2.2. Study Area and Field Measurement
2.3. ENVI-Met Validation
2.4. Tree Growth Models and Parameter Setting
2.5. ENVI-Met Setting
2.6. Thermal Comfort Evaluation Indices
3. Results
3.1. Assessment of Thermal Environment and Accuracy of ENVI-Met
3.2. Decrease in Solar Radiation
3.3. Ta and RH Variation in Line-Planting Scenarios
3.4. Decrease in MRT
3.5. Thermal Comfort Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Mangifera indica | DBH = 15 cm | DBH = 25 cm | DBH = 35 cm |
---|---|---|---|
Crown width (m) | 3 | 6 | 9 |
Tree height (m) | 5 | 7 | 8 |
Leaf albedo | 0.27 | ||
Root depth (m) | 0.45 | ||
Root diameter (m) | default value in ENVI-met | ||
LAI | 0.98 | 2.78 | 4.5 |
2–3 m of LAD | 0.30 | 0.49 | 0.78 |
3–4 m of LAD | 0.40 | 0.74 | 1.02 |
4–5 m of LAD | 0.29 | 0.74 | 1.01 |
5–6 m of LAD | 0.63 | 0.95 | |
6–7 m of LAD | 0.18 | 0.70 | |
7–8 m of LAD | 0.14 |
Michelia alba | DBH = 15 cm | DBH = 25 cm | DBH = 35 cm |
---|---|---|---|
Crown width (m) | 5 | 7 | 8 |
Tree height (m) | 9 | 12 | 15 |
Leaf albedo | 0.28 | ||
Root depth (m) | 0.45 | ||
Root diameter (m) | default value in ENVI-met | ||
LAI | 1.88 | 2.68 | 3.48 |
3–4 m of LAD | 0.19 | 0.29 | 0.33 |
4–5 m of LAD | 0.30 | 0.35 | 0.36 |
5–6 m of LAD | 0.46 | 0.40 | 0.39 |
6–7 m of LAD | 0.45 | 0.40 | 0.39 |
7–8 m of LAD | 0.38 | 0.39 | 0.39 |
8–9 m of LAD | 0.11 | 0.37 | 0.38 |
9–10 m of LAD | 0.30 | 0.36 | |
10–11 m of LAD | 0.17 | 0.33 | |
11–12 m of LAD | 0.02 | 0.28 | |
12–13 m of LAD | 0.20 | ||
13–14 m of LAD | 0.08 | ||
14–15 m of LAD | 0.01 |
Ficus microcarpa L. f. | DBH = 15 cm | DBH = 25 cm | DBH = 35 cm |
---|---|---|---|
Crown width (m) | 4 | 9 | 14 |
Tree height (m) | 5 | 6 | 8 |
Leaf albedo | 0.31 | ||
Root depth (m) | 0.45 | ||
Root diameter (m) | default value in ENVI-met | ||
LAI | 2.60 | 4.90 | 7.20 |
2–3 m of LAD | 0.24 | 0.80 | 1.22 |
3–4 m of LAD | 1.37 | 1.71 | 1.59 |
4–5 m of LAD | 0.98 | 1.66 | 1.59 |
5–6 m of LAD | 0.72 | 1.49 | |
6–7 m of LAD | 1.10 | ||
7–8 m of LAD | 0.22 |
References
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-0-521-84950-0. [Google Scholar]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Zhu, J.; Qi, J. Beating the Urban Heat: Situation, Background, Impacts and the Way Forward in China. Renew. Sustain. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, D.; Dong, X.; Xiong, K.; Feng, C.; Qi, Q.; Darko, A.; Sharifi, A.; Pathak, M. Perception, Physiological and Psychological Impacts, Adaptive Awareness and Knowledge, and Climate Justice under Urban Heat: A Study in Extremely Hot-Humid Chongqing, China. Sustain. Cities Soc. 2022, 79, 103685. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.; Wang, B.; Zhou, M.; Li, M.; Tong, S.; Meng, B.; Guo, Y.; Liu, Q. Heatwave and Mortality in 31 Major Chinese Cities: Definition, Vulnerability and Implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Lau, K.; Shek, Y.T.; Liu, Z.; Ng, E. Evaluation on the Performance of Tree View Factor in a High-Density Subtropical City: A Case Study in Hong Kong. Build. Environ. 2023, 239, 110431. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, D.K.; Krayenhoff, E.S.; Heo, H.K.; Hyun, J.H.; Oh, K.; Park, T.Y. Variations in Pedestrian Mean Radiant Temperature Based on the Spacing and Size of Street Trees. Sustain. Cities Soc. 2019, 48, 101521. [Google Scholar] [CrossRef]
- Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H. The Potential for Reducing Urban Air Temperatures and Energy Consumption Through Vegetative Cooling; Lawrence Berkeley National Lab: Berkeley, CA, USA, 1994. [Google Scholar]
- Forzieri, G.; Miralles, D.G.; Ciais, P.; Alkama, R.; Ryu, Y.; Duveiller, G.; Zhang, K.; Robertson, E.; Kautz, M.; Martens, B.; et al. Increased Control of Vegetation on Global Terrestrial Energy Fluxes. Nat. Clim. Change 2020, 10, 356–362. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Wei, Y.; Hu, D. 3D Urban Landscape Optimization: From the Perspective of Heat Flux-Microclimate Relations. Sustain. Cities Soc. 2023, 97, 104759. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a Mitigation and Adaptation Strategy to Urban Heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, K.Y.; He, Y.; Jim, C.Y.; Brown, R.D.; Shi, Y.; Lau, K.; Ng, E. Microclimatic Measurements in Tropical Cities: Systematic Review and Proposed Guidelines. Build. Environ. 2022, 222, 109411. [Google Scholar] [CrossRef]
- Monteith, J.L.; Unsworth, M.H. Chapter 3—Transport of Heat, Mass, and Momentum. In Principles of Environmental Physics, 4th ed.; Monteith, J.L., Unsworth, M.H., Eds.; Academic Press: Boston, MA, USA, 2013; pp. 25–35. ISBN 978-0-12-386910-4. [Google Scholar]
- Rana, G.; Ferrara, R.M. Air Cooling by Tree Transpiration: A Case Study of Olea europaea, Citrus sinensis and Pinus pinea in Mediterranean Town. Urban Clim. 2019, 29, 100507. [Google Scholar] [CrossRef]
- Wang, X.; Rahman, M.A.; Mokroš, M.; Rötzer, T.; Pattnaik, N.; Pang, Y.; Zhang, Y.; Da, L.; Song, K. The Influence of Vertical Canopy Structure on the Cooling and Humidifying Urban Microclimate during Hot Summer Days. Landsc. Urban Plann. 2023, 238, 104841. [Google Scholar] [CrossRef]
- Sugawara, H.; Narita, K.; Mikami, T. Vertical Structure of the Cool Island in a Large Urban Park. Urban Clim. 2021, 35, 100744. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The Role of One Large Greenspace in Mitigating London’s Nocturnal Urban Heat Island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef]
- Liao, W.; Guldmann, J.-M.; Hu, L.; Cao, Q.; Gan, D.; Li, X. Linking Urban Park Cool Island Effects to the Landscape Patterns inside and Outside the Park: A Simultaneous Equation Modeling Approach. Landsc. Urban Plann. 2023, 232, 104681. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Wang, C.; Ürge-Vorsatz, D.; Carmeliet, J.; Bardhan, R. Cooling Efficacy of Trees across Cities Is Determined by Background Climate, Urban Morphology, and Tree Trait. Commun. Earth Environ. 2024, 5, 1–14. [Google Scholar] [CrossRef]
- Zhao, T.F.; Fong, K.F. Characterization of Different Heat Mitigation Strategies in Landscape to Fight against Heat Island and Improve Thermal Comfort in Hot–Humid Climate (Part I): Measurement and Modelling. Sustain. Cities Soc. 2017, 32, 523–531. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. Nature-Based Solutions Efficiency Evaluation against Natural Hazards: Modelling Methods, Advantages and Limitations. Sci. Total Environ. 2021, 784, 147058. [Google Scholar] [CrossRef] [PubMed]
- Abdi, B.; Hami, A.; Zarehaghi, D. Impact of Small-Scale Tree Planting Patterns on Outdoor Cooling and Thermal Comfort. Sustain. Cities Soc. 2020, 56, 102085. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of Trees and Grasslands to the Mitigation of Human Heat Stress in a Residential District of Freiburg, Southwest Germany. Landsc. Urban Plann. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- de Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of Tree Planting Design and Tree Species on Human Thermal Comfort in the Tropics. Landsc. Urban Plann. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B.; Hu, Y. Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—a Case Study of Changsha, China. Sustainability 2020, 12, 2752. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A Study on the Cooling Effects of Greening in a High-Density City: An Experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban Tree Design Approaches for Mitigating Daytime Urban Heat Island Effects in a High-Density Urban Environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Zheng, S.; Guldmann, J.-M.; Liu, Z.; Zhao, L. Influence of Trees on the Outdoor Thermal Environment in Subtropical Areas: An Experimental Study in Guangzhou, China. Sustain. Cities Soc. 2018, 42, 482–497. [Google Scholar] [CrossRef]
- Zheng, S.; He, C.; Xu, H.; Guldmann, J.-M.; Liu, X. Heat Mitigation Benefits of Street Tree Species during Transition Seasons in Hot and Humid Areas: A Case Study in Guangzhou. Forests 2024, 15, 1459. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C.Y. Comparing the Cooling Effects of a Tree and a Concrete Shelter Using PET and UTCI. Build. Environ. 2018, 130, 49–61. [Google Scholar] [CrossRef]
- Müller, N.; Kuttler, W.; Barlag, A.-B. Counteracting Urban Climate Change: Adaptation Measures and Their Effect on Thermal Comfort. Theor. Appl. Climatol. 2014, 115, 243–257. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying Urban Forest Structure, Function, and Value: The Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hartmann, C.; Moser-Reischl, A.; von Strachwitz, M.F.; Paeth, H.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Tree Cooling Effects and Human Thermal Comfort under Contrasting Species and Sites. Agric. For. Meteorol. 2020, 287, 107947. [Google Scholar] [CrossRef]
- Lin, C.; Yang, J.; Huang, J.; Zhong, R. Examining the Effects of Tree Canopy Coverage on Human Thermal Comfort and Heat Dynamics in Courtyards: A Case Study in Hot-Humid Regions. Atmosphere 2023, 14, 1389. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, Q.; Lan, Y. Effects of the Tree Distribution and Species on Outdoor Environment Conditions in a Hot Summer and Cold Winter Zone: A Case Study in Wuhan Residential Quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- You, C.; Qu, H.; Feng, C.-C.; Guo, L. Evaluating the Match between Natural Ecosystem Service Supply and Cultural Ecosystem Service Demand: Perspectives on Spatiotemporal Heterogeneity. Environ. Impact Assess. Rev. 2024, 108, 107592. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Evaluating the Cooling Effects of Green Infrastructure: A Systematic Review of Methods, Indicators and Data Sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Buccolieri, R.; Santiago, J.-L.; Rivas, E.; Sanchez, B. Review on Urban Tree Modelling in CFD Simulations: Aerodynamic, Deposition and Thermal Effects. Urban For. Urban Green. 2018, 31, 212–220. [Google Scholar] [CrossRef]
- Aminipouri, M.; Knudby, A.J.; Krayenhoff, E.S.; Zickfeld, K.; Middel, A. Modelling the Impact of Increased Street Tree Cover on Mean Radiant Temperature across Vancouver’s Local Climate Zones. Urban For. Urban Green. 2019, 39, 9–17. [Google Scholar] [CrossRef]
- Lau, K.K.-L.; Tan, Z.; Morakinyo, T.E.; Ren, C. Effect of Tree Species on Outdoor Thermal Comfort. In Outdoor Thermal Comfort in Urban Environment: Assessments and Applications in Urban Planning and Design; Lau, K.K.-L., Tan, Z., Morakinyo, T.E., Ren, C., Eds.; Springer: Singapore, 2022; pp. 101–123. ISBN 978-981-16-5245-5. [Google Scholar]
- Tan, Z.; Wang, A.; Morakinyo, T.E.; Yung, E.H.K.; Chan, E.H.W. Assessing the Mitigation Performance of Building Setback from Street and the Combination with Roadside Tree Planting. Build. Environ. 2022, 212, 108814. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Ouyang, W.; Lau, K.K.-L.; Ren, C.; Ng, E. Right Tree, Right Place (Urban Canyon): Tree Species Selection Approach for Optimum Urban Heat Mitigation - Development and Evaluation. Sci. Total Environ. 2020, 719, 137461. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, Y.; Zou, Y.; Xia, D.; Lou, S.; Liu, W.; Ji, K. Effects of Tree Species and Layout on the Outdoor Thermal Environment of Squares in Hot-Humid Areas of China. Buildings 2022, 12, 1867. [Google Scholar] [CrossRef]
- Chen, L.; Wen, Y.; Zhang, L.; Xiang, W.-N. Studies of Thermal Comfort and Space Use in an Urban Park Square in Cool and Cold Seasons in Shanghai. Build. Environ. 2015, 94, 644–653. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating Surface–Plant–Air Interactions inside Urban Environments with a Three Dimensional Numerical Model. Environ. Modell. Software 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Wu, H.; Jin, R.; Liu, M.; Nie, Z.; Zhao, H.; Yao, L.; Zhao, L. Investigating the Potential of Street Trees in Mitigating Pedestrian Thermal Stress during Heatwaves Conditions: An Empirical Study in Guangzhou. Build. Environ. 2024, 265, 111955. [Google Scholar] [CrossRef]
- Qi, Q.; Meng, Q.; Wang, J.; He, B.; Liang, H.; Ren, P. Applicability of Mobile-Measurement Strategies to Different Periods: A Field Campaign in a Precinct with a Block Park. Build. Environ. 2022, 211, 108762. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. An Integrated Simulation Method for Building Energy Performance Assessment in Urban Environments. Energy Build. 2012, 54, 243–251. [Google Scholar] [CrossRef]
- Ouyang, W.; Sinsel, T.; Simon, H.; Morakinyo, T.E.; Liu, H.; Ng, E. Evaluating the Thermal-Radiative Performance of ENVI-Met Model for Green Infrastructure Typologies: Experience from a Subtropical Climate. Build. Environ. 2022, 207, 108427. [Google Scholar] [CrossRef]
- Sinsel, T.; Simon, H.; Ouyang, W.; dos Santos Gusson, C.; Shinzato, P.; Bruse, M. Implementation and Evaluation of Mean Radiant Temperature Schemes in the Microclimate Model ENVI-Met. Urban Clim. 2022, 45, 101279. [Google Scholar] [CrossRef]
- Lai, D.; Liu, Y.; Liao, M.; Yu, B. Effects of Different Tree Layouts on Outdoor Thermal Comfort of Green Space in Summer Shanghai. Urban Clim. 2023, 47, 101398. [Google Scholar] [CrossRef]
- Guo, T.; Lin, Z.; Zhao, Y.; Fang, Z.; Fan, Y.; Zhang, X.; Yang, J.; Li, Y. Investigation and Optimization of Outdoor Thermal Comfort in Elementary School Campuses: Example from a Humid-Hot Area in China. Build. Environ. 2024, 248, 111055. [Google Scholar] [CrossRef]
- Kántor, N.; Kovács, A.; Lin, T.-P. Looking for Simple Correction Functions between the Mean Radiant Temperature from the “Standard Black Globe” and the “Six-Directional” Techniques in Taiwan. Theor. Appl. Climatol. 2015, 121, 99–111. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Liu, Z.; Brown, R.D.; Zheng, S.; Jiang, Y.; Zhao, L. An In-Depth Analysis of the Effect of Trees on Human Energy Fluxes. Urban For. Urban Green. 2020, 50, 126646. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, S.; Zhao, L. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area. Atmosphere 2018, 9, 198. [Google Scholar] [CrossRef]
- Zheng, S.; Guldmann, J.-M.; Wang, Z.; Qiu, Z.; He, C.; Wang, K. Experimental and Theoretical Study of Urban Tree Instantaneous and Hourly Transpiration Rates and Their Cooling Effect in Hot and Humid Area. Sustain. Cities Soc. 2021, 68, 102808. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, D.; Wang, Y.; Meng, X.; Gu, Z.; Xu, D.; Han, X. Planning Method of Centralized Greening in High-Rise Residential Blocks Based on Improvement of Thermal Comfort in Summer. Sustain. Cities Soc. 2022, 80, 103802. [Google Scholar] [CrossRef]
- Estacio, I.; Hadfi, R.; Blanco, A.; Ito, T.; Babaan, J. Optimization of Tree Positioning to Maximize Walking in Urban Outdoor Spaces: A Modeling and Simulation Framework. Sustain. Cities Soc. 2022, 86, 104105. [Google Scholar] [CrossRef]
- Cheng, X.-L.; Nizamani, M.M.; Jim, C.-Y.; Qureshi, S.; Liu, S.; Zhu, Z.-X.; Wu, S.-S.; Balfour, K.; Wang, H.-F. Response of Urban Tree DBH to Fast Urbanization: Case of Coastal Zhanjiang in South China. Urban Ecosyst. 2022, 25, 511–522. [Google Scholar] [CrossRef]
- Hui, L.C.; Jim, C.Y.; Zhang, H. Allometry of Urban Trees in Subtropical Hong Kong and Effects of Habitat Types. Landsc. Ecol. 2020, 35, 1143–1160. [Google Scholar] [CrossRef]
- Hauer, R.J.; Koeser, A.K.; Parbs, S.; Kringer, J.; Krouse, R.; Ottman, K.; Miller, R.W.; Sivyer, D.; Timilsina, N.; Werner, L.P. Long-Term Effects and Development of a Tree Preservation Program on Tree Condition, Survival, and Growth. Landsc. Urban Plann. 2020, 193, 103670. [Google Scholar] [CrossRef]
- Chau, N.L.; Jim, C.Y.; Zhang, H. Species-Specific Holistic Assessment of Tree Structure and Defects in Urban Hong Kong. Urban For. Urban Green. 2020, 55, 126813. [Google Scholar] [CrossRef]
- McPherson, E.G.; Xiao, Q.; van Doorn, N.S.; Johnson, N.; Albers, S.; Peper, P.J. Shade Factors for 149 Taxa of In-Leaf Urban Trees in the USA. Urban For. Urban Green. 2018, 31, 204–211. [Google Scholar] [CrossRef]
- Guo, T.; Zhao, Y.; Yang, J.; Zhong, Z.; Ji, K.; Zhong, Z.; Luo, X. Effects of Tree Arrangement and Leaf Area Index on the Thermal Comfort of Outdoor Children’s Activity Space in Hot-Humid Areas. Buildings 2023, 13, 214. [Google Scholar] [CrossRef]
- Lalic, B.; Mihailovic, D.T. An Empirical Relation Describing Leaf-Area Density inside the Forest for Environmental Modeling. J. Appl. Meteorol. Climatol. 2004, 43, 641–645. [Google Scholar] [CrossRef]
- Niu, J.; Xiong, J.; Qin, H.; Hu, J.; Deng, J.; Han, G.; Yan, J. Influence of Thermal Comfort of Green Spaces on Physical Activity: Empirical Study in an Urban Park in Chongqing, China. Build. Environ. 2022, 219, 109168. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. A Systematic Review Advocating a Framework and Benchmarks for Assessing Outdoor Human Thermal Perception. Sci. Total Environ. 2022, 833, 155128. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.K.C.; Weng, J.; Liu, K.; Hang, J. The Effects of Shading Devices on Outdoor Thermal and Visual Comfort in Southern China during Summer. Build. Environ. 2023, 228, 109743. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, Y.; Yang, J.; Li, Y.; Luo, Z. Adaptive Design Strategies for Thermal Comfort in Waterfront Campsites during Summer in Hot and Humid Regions. Int. J. Therm. Sci. 2024, 199, 108945. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, Y.; Li, Y.; Yang, J.; Guo, T. Effects of Tree Species and Planting Forms on the Thermal Comfort of Campsites in Hot and Humid Areas of China. Int. J. Biometeorol. 2024, 68, 1437–1449. [Google Scholar] [CrossRef]
- Teshnehdel, S.; Akbari, H.; Di Giuseppe, E.; Brown, R.D. Effect of Tree Cover and Tree Species on Microclimate and Pedestrian Comfort in a Residential District in Iran. Build. Environ. 2020, 178, 106899. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, D.; Wang, Y.; Ma, D.; Chen, W.; Xu, D.; Zhu, Z. Economical and Outdoor Thermal Comfort Analysis of Greening in Multistory Residential Areas in Xi’an. Sustain. Cities Soc. 2019, 51, 101730. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments: Basics of the RayMan Model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments—Application of the RayMan Model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a Universal Thermal Index: Physiological Equivalent Temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, X.; Zhou, X.; Deng, S.; Wu, H.; Liu, J.; Lin, Z. Investigation into the Thermal Comfort of University Students Conducting Outdoor Training. Build. Environ. 2019, 149, 26–38. [Google Scholar] [CrossRef]
- Fang, Z.; Feng, X.; Xu, X.; Zhou, X.; Lin, Z.; Ji, Y. Investigation into Outdoor Thermal Comfort Conditions by Different Seasonal Field Surveys in China, Guangzhou. Int. J. Biometeorol. 2019, 63, 1357–1368. [Google Scholar] [CrossRef] [PubMed]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications—A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Saroglou, T.; Pearlmutter, D. Evaluation of Summer Mean Radiant Temperature Simulation in ENVI-Met in a Hot Mediterranean Climate. Build. Environ. 2023, 245, 110881. [Google Scholar] [CrossRef]
- Liu, S.; Middel, A.; Fang, X.; Wu, R. ENVI-Met Model Performance Evaluation for Courtyard Simulations in Hot-Humid Climates. Urban Clim. 2024, 55, 101909. [Google Scholar] [CrossRef]
- Xiao, Q.; Fan, X.; Guo, Y.; Li, S.; He, W.; Deng, Y.; Xiao, Z.; Wang, P.; Wu, C. Tree Form Characteristics as Criteria for Tree Species Selection to Improve Pedestrian Thermal Comfort in Street Canyons: Case Study of a Humid Subtropical City. Sustain. Cities Soc. 2024, 105, 105339. [Google Scholar] [CrossRef]
- Ko, Y.; Lee, J.-H.; McPherson, E.G.; Roman, L.A. Long-Term Monitoring of Sacramento Shade Program Trees: Tree Survival, Growth and Energy-Saving Performance. Landsc. Urban Plann. 2015, 143, 183–191. [Google Scholar] [CrossRef]
- Dervishi, V.; Poschenrieder, W.; Rötzer, T.; Moser-Reischl, A.; Pretzsch, H. Effects of Climate and Drought on Stem Diameter Growth of Urban Tree Species. Forests 2022, 13, 641. [Google Scholar] [CrossRef]
- Shu, Q.; Rötzer, T.; Detter, A.; Ludwig, F. Tree Information Modeling: A Data Exchange Platform for Tree Design and Management. Forests 2022, 13, 1955. [Google Scholar] [CrossRef]
- Rahman, M.A.; Arndt, S.; Bravo, F.; Cheung, P.K.; van Doorn, N.; Franceschi, E.; del Río, M.; Livesley, S.J.; Moser-Reischl, A.; Pattnaik, N.; et al. More than a Canopy Cover Metric: Influence of Canopy Quality, Water-Use Strategies and Site Climate on Urban Forest Cooling Potential. Landsc. Urban Plann. 2024, 248, 105089. [Google Scholar] [CrossRef]
- Franceschi, E.; Moser-Reischl, A.; Honold, M.; Rahman, M.A.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Urban Environment, Drought Events and Climate Change Strongly Affect the Growth of Common Urban Tree Species in a Temperate City. Urban For. Urban Green. 2023, 88, 128083. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Yang, X.; Zhang, L.; Xu, Y.; Yuan, X.; Agathokleous, E.; Xu, Y.; Feng, Z. Phenology- and Light-Based Parameterization of Stomatal Conductance Model for Urban Woody Species in Northern China. Environ. Res. 2024, 260, 119658. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Wang, J.; Feng, H.; Zhang, R.; Zhang, W.; Siddique, K.H.M. Considering Water-Temperature Synergistic Factors Improves Simulations of Stomatal Conductance Models under Plastic Film Mulching. Agric. Water Manag. 2024, 306, 109211. [Google Scholar] [CrossRef]
- Pattnaik, N.; Honold, M.; Franceschi, E.; Moser-Reischl, A.; Rötzer, T.; Pretzsch, H.; Pauleit, S.; Rahman, M.A. Growth and Cooling Potential of Urban Trees across Different Levels of Imperviousness. J. Environ. Manag. 2024, 361, 121242. [Google Scholar] [CrossRef] [PubMed]
- Lecigne, B.; Delagrange, S.; Messier, C. Determinants of Delayed Traumatic Tree Reiteration Growth: Levels of Branch Growth Control and Insights for Urban Tree Management, Modeling and Future Research. Urban For. Urban Green. 2020, 47, 126541. [Google Scholar] [CrossRef]
- Jia, J.; Wang, L.; Yao, Y.; Jing, Z.; Zhai, Y.; Ren, Z.; He, X.; Li, R.; Zhang, X.; Chen, Y.; et al. Nonlinear Relationships between Canopy Structure and Cooling Effects in Urban Forests: Insights from 3D Structural Diversity at the Single Tree and Community Scales. Sustain. Cities Soc. 2025, 118, 106012. [Google Scholar] [CrossRef]
- van den Berg, M.; Wendel-Vos, W.; van Poppel, M.; Kemper, H.; van Mechelen, W.; Maas, J. Health Benefits of Green Spaces in the Living Environment: A Systematic Review of Epidemiological Studies. Urban For. Urban Green. 2015, 14, 806–816. [Google Scholar] [CrossRef]
- Doan, Q.C.; Ma, J.; Chen, S.; Zhang, X. Nonlinear and Threshold Effects of the Built Environment, Road Vehicles and Air Pollution on Urban Vitality. Landsc. Urban Plann. 2025, 253, 105204. [Google Scholar] [CrossRef]
- Sugiyama, T.; Carver, A.; Koohsari, M.J.; Veitch, J. Advantages of Public Green Spaces in Enhancing Population Health. Landsc. Urban Plann. 2018, 178, 12–17. [Google Scholar] [CrossRef]
Instruments | Parameters | Range | Accuracy | Sampling Rate |
---|---|---|---|---|
HOBO Pro | Ta | −40–70 °C | ±0.02 °C | 1 min |
RH | 0–100% | ±2.5% | ||
Kipp & Zonen CMP3 | SR | 300–2800 nm | ±5.0% (−40–80 °C) | |
Deltaohm-HD32.3 AP3203.2 | Tg | −30–120 °C | ±0.15 °C | |
Kestrel 5500 | Va | 0–5 m/s | ±0.05 m/s |
Species | MI | MA | FM |
---|---|---|---|
Growth Models | |||
Planting Interval (m) | 6 | 8 | 10 | |
---|---|---|---|---|
MI | DBH = 15 cm | MI-15-6 | MI-15-8 | MI-15-10 |
DBH = 25 cm | MI-25-6 | MI-25-8 | MI-25-10 | |
DBH = 35 cm | MI-35-6 | MI-35-8 | MI-35-10 | |
MA | DBH = 15 cm | MA-15-6 | MA-15-8 | MA-15-10 |
DBH = 25 cm | MA-25-6 | MA-25-8 | MA-25-10 | |
DBH = 35 cm | MA-35-6 | MA-35-8 | MA-35-10 | |
FM | DBH = 15 cm | FM-15-6 | FM-15-8 | FM-15-10 |
DBH = 25 cm | FM-25-6 | FM-25-8 | FM-25-10 | |
DBH = 35 cm | FM-35-6 | FM-35-8 | FM-35-10 | |
Case-0 | No tree |
Thermal Sensation | Grade of Physiological Stress | PET Range (°C) |
---|---|---|
Very cold | Extreme cold stress | <4 |
Cold | Strong cold stress | 4–8 |
Cool | Moderate cold stress | 8–13 |
Slightly cool | Slight cold stress | 13–18 |
Comfortable | No thermal stress | 18–23 |
Slightly warm | Slight heat stress | 23–29 |
Warm | Moderate heat stress | 29–35 |
Hot | Strong heat stress | 35–41 |
Very hot | Extreme heat stress | >41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Huang, Y.; Pan, X. Optimizing Thermal Comfort in Urban Squares of Hot-Humid Regions: A Case Study Considering Tree Growth, Species, and Planting Intervals. Atmosphere 2025, 16, 63. https://doi.org/10.3390/atmos16010063
Xiao Y, Huang Y, Pan X. Optimizing Thermal Comfort in Urban Squares of Hot-Humid Regions: A Case Study Considering Tree Growth, Species, and Planting Intervals. Atmosphere. 2025; 16(1):63. https://doi.org/10.3390/atmos16010063
Chicago/Turabian StyleXiao, Yixuan, Yong Huang, and Xinchen Pan. 2025. "Optimizing Thermal Comfort in Urban Squares of Hot-Humid Regions: A Case Study Considering Tree Growth, Species, and Planting Intervals" Atmosphere 16, no. 1: 63. https://doi.org/10.3390/atmos16010063
APA StyleXiao, Y., Huang, Y., & Pan, X. (2025). Optimizing Thermal Comfort in Urban Squares of Hot-Humid Regions: A Case Study Considering Tree Growth, Species, and Planting Intervals. Atmosphere, 16(1), 63. https://doi.org/10.3390/atmos16010063