The Influence of Multisensory Perception on Student Outdoor Comfort in University Campus Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Context
2.2. Objective Measurement and Material Used
2.3. Perceptual Dimensions and Questionnaire
2.4. Participants
2.5. Data Analysis
2.6. Fuzzy Logic Model
3. Results
3.1. Physical Dimensions
3.2. Perceptual Dimensions
3.2.1. Overall Perception of the Space: Responses Analysis
3.2.2. General Perception Dependence: Ordinal Regression Model
3.3. Correlation Analysis
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Zhang, Y.; Zhang, Q.; Xue, P.; Wu, H.; Xu, W.; Ye, J.; Chen, L.; He, T.; Zheng, Y. Exploring the Multi-Sensory Coupling Relationship of Open Space on a Winter Campus. Forests 2024, 15, 876. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Qiu, J.; Wei, T. Sustainable University Campuses: Temporal and Spatial Characteristics of Lightscapes in Outdoor Spaces. Sustainability 2024, 16, 7355. [Google Scholar] [CrossRef]
- Ning, S.; Jing, W.; Ge, Z. Sunlight perception and outdoor thermal comfort in college campuses: A new perspective. Sci. Rep. 2023, 13, 16112. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tian, Y.; Du, M.; Hong, B.; Lin, B. How to design comfortable open spaces for the elderly? Implications of their thermal perceptions in an urban park. Sci. Total Environ. 2021, 768, 144985. [Google Scholar] [CrossRef]
- Spence, C. Senses of place: Architectural design for the multisensory mind. Cogn. Res. Princ. Implic. 2020, 5, 46. [Google Scholar] [CrossRef] [PubMed]
- Vasilikou, C.; Nikolopoulou, M. Outdoor thermal comfort for pedestrians in movement: Thermal walks in complex urban morphology. Int. J. Biometeorol. 2020, 64, 277–291. [Google Scholar] [CrossRef]
- Gomaa, M.M.; Othman, E.; Mohamed, A.F.; Ragab, A. Quantifying the Impacts of Courtyard Vegetation on Thermal and Energy Performance of University Buildings in Hot Arid Regions. Urban Sci. 2024, 8, 136. [Google Scholar] [CrossRef]
- Li, G.; Liu, C.; He, Y. The effect of thermal discomfort on human well-being, psychological response and performance. Sci. Technol. Built Environ. 2021, 27, 960–970. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Costa, J.P.; Santamouris, M.; Matzarakis, A. Approaches to outdoor thermal comfort thresholds through public space design: A review. Atmosphere 2018, 9, 108. [Google Scholar] [CrossRef]
- Xu, M.; Hong, B.; Jiang, R.; An, L.; Zhang, T. Outdoor thermal comfort of shaded spaces in an urban park in the cold region of China. Build. Environ. 2019, 155, 408–420. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Rajagopalan, P.; Sagoo, A. A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustain. Cities Soc. 2018, 41, 647–665. [Google Scholar] [CrossRef]
- Erfanian, M.; Mitchell, A.J.; Kang, J.; Aletta, F. The psychophysiological implications of soundscape: A systematic review of empirical literature and a research agenda. Int. J. Environ. Res. Public Health 2019, 16, 3533. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, A.; Jordan, P.; Moshona, C.C. Assessments of acoustic environments by emotions–the application of emotion theory in soundscape. Front. Psychol. 2020, 11, 573041. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, M. Semantic differential analysis of the soundscape in urban open public spaces. Build. Environ. 2010, 45, 150–157. [Google Scholar] [CrossRef]
- Boiné, K.; Demers, C.M.; Potvin, A. Spatio-temporal promenades as representations of urban atmospheres. Sustain. Cities Soc. 2018, 42, 674–687. [Google Scholar] [CrossRef]
- Berkouk, D.; Bouzir, T.A.K.; Boucherit, S.; Khelil, S.; Mahaya, C.; Matallah, M.E.; Mazouz, S. Exploring the Multisensory Interaction between Luminous, Thermal and Auditory Environments through the Spatial Promenade Experience: A Case Study of a University Campus in an Oasis Settlement. Sustainability 2022, 14, 4013. [Google Scholar] [CrossRef]
- Nitidara, N.P.A.; Sarwono, J.; Suprijanto, S.; Soelami, F.N. The multisensory interaction between auditory, visual, and thermal to the overall comfort in public open space: A study in a tropical climate. Sustain. Cities Soc. 2022, 78, 103622. [Google Scholar] [CrossRef]
- Sanchez, G.M.E.; Van Renterghem, T.; Sun, K.; De Coensel, B.; Botteldooren, D. Using Virtual Reality for assessing the role of noise in the audio-visual design of an urban public space. Landsc. Urban Plan. 2017, 167, 98–107. [Google Scholar] [CrossRef]
- Nie, X.; Wang, Y.; Zhang, C.; Zhao, Y.; Kirkwood, N. The varied restorative values of campus landscapes to students’ well-being: Evidence from a Chinese University. BMC Public Health 2024, 24, 487. [Google Scholar] [CrossRef]
- Ribeiro, H.; Santana, K.V.d.S.; Oliver, S.L. Natural Environments in University Campuses and Students’ Well-Being. Int. J. Environ. Res. Public Health 2024, 21, 413. [Google Scholar] [CrossRef] [PubMed]
- Boucherit, S.; Maffei, L.; Masullo, M.; Berkouk, D.; Bouzir, T.A.K. Assessment of sighted and visually impaired users to the physical and perceptual dimensions of an oasis settlement urban park. Sustainability 2023, 15, 7014. [Google Scholar] [CrossRef]
- Derdous, O.; Tachi, S.E.; Bouguerra, H. Spatial distribution and evaluation of aridity indices in Northern Algeria. Arid Land Res. Manag. 2021, 35, 1–14. [Google Scholar] [CrossRef]
- Scarano, M.; Sobrino, J. On the relationship between the sky view factor and the land surface temperature derived by Landsat-8 images in Bari, Italy. Int. J. Remote Sens. 2015, 36, 4820–4835. [Google Scholar] [CrossRef]
- Palinkas, L.A.; Aarons, G.A.; Horwitz, S.; Chamberlain, P.; Hurlburt, M.; Landsverk, J. Mixed method designs in implementation research. Adm. Policy Ment. Health Ment. Health Serv. Res. 2011, 38, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, X.; Lao, Z.; Liu, W.; Li, Z.; García, E.H.; He, L.; Zhu, J. Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Build. Environ. 2017, 123, 277–288. [Google Scholar] [CrossRef]
- Matallah, M.E.; Alkama, D.; Ahriz, A.; Attia, S. Assessment of the outdoor thermal comfort in oases settlements. Atmosphere 2020, 11, 185. [Google Scholar] [CrossRef]
- Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.Κ. Thermal environment of urban schoolyards: Current and future design with respect to children’s thermal comfort. Atmosphere 2020, 11, 1144. [Google Scholar] [CrossRef]
- Hu, S.; He, M.; Liu, G.; Lu, M.; Liang, P.; Liu, F. Correlation between the visual evoked potential and subjective perception at different illumination levels based on entropy analysis. Build. Environ. 2021, 194, 107715. [Google Scholar] [CrossRef]
- Masullo, M.; Cioffi, F.; Li, J.; Maffei, L.; Ciampi, G.; Sibilio, S.; Scorpio, M. Urban Park Lighting Quality Perception: An Immersive Virtual Reality Experiment. Sustainability 2023, 15, 2069. [Google Scholar] [CrossRef]
- Bellia, L.; Cesarano, A.; Iuliano, G.F.; Spada, G. Daylight glare: A review of discomfort indexes. Vis. Qual. Energy Effic. Indoor Light. Today Tomorrow 2008, 31, 1–10. [Google Scholar]
- Yacine, S.M.; Noureddine, Z.; Piga, B.E.; Morello, E.; Safa, D. Towards a new model of light quality assessment based on occupant satisfaction and lighting glare indices. Energy Procedia 2017, 122, 805–810. [Google Scholar] [CrossRef]
- Kalawapudi, K.; Singh, T.; Vijay, R.; Goyal, N.; Kumar, R. Effects of COVID-19 pandemic on festival celebrations and noise pollution levels. Noise Mapp. 2021, 8, 89–93. [Google Scholar] [CrossRef]
- Hong, J.Y.; He, J.; Lam, B.; Gupta, R.; Gan, W.-S. Spatial audio for soundscape design: Recording and reproduction. Appl. Sci. 2017, 7, 627. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Comparing associations among sound sources, human behaviors, and soundscapes on central business and commercial streets in Seoul, Korea. Build. Environ. 2020, 186, 107327. [Google Scholar] [CrossRef]
- He, X.; An, L.; Hong, B.; Huang, B.; Cui, X. Cross-cultural differences in thermal comfort in campus open spaces: A longitudinal field survey in China’s cold region. Build. Environ. 2020, 172, 106739. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Yao, R. Investigation and analysis on classroom thermal environment in winter in Chongqing. J. Heat. Vent. Air Cond. 2007, 37, 115–117. [Google Scholar]
- Fang, Z.; Zheng, Z.; Feng, X.; Shi, D.; Lin, Z.; Gao, Y. Investigation of outdoor thermal comfort prediction models in South China: A case study in Guangzhou. Build. Environ. 2021, 188, 107424. [Google Scholar] [CrossRef]
- Andrade, H.; Alcoforado, M.-J.; Oliveira, S. Perception of temperature and wind by users of public outdoor spaces: Relationships with weather parameters and personal characteristics. Int. J. Biometeorol. 2011, 55, 665–680. [Google Scholar] [CrossRef]
- Castilla, N.; Llinares, C.; Bisegna, F.; Blanca-Giménez, V. Affective evaluation of the luminous environment in university classrooms. J. Environ. Psychol. 2018, 58, 52–62. [Google Scholar] [CrossRef]
- Portnov, B.A.; Saad, R.; Trop, T.; Kliger, D.; Svechkina, A. Linking nighttime outdoor lighting attributes to pedestrians’ feeling of safety: An interactive survey approach. PLoS ONE 2020, 15, e0242172. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Nilsson, M.E.; Berglund, B. A principal components model of soundscape perception. J. Acoust. Soc. Am. 2010, 128, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- Hanoon, S.K.; Abdullah, A.F.; Shafri, H.Z.; Wayayok, A. Comprehensive vulnerability assessment of urban areas using an integration of fuzzy logic functions: Case study of Nasiriyah City in South Iraq. Earth 2022, 3, 699–732. [Google Scholar] [CrossRef]
- Pedrycz, W.; Gomide, F. Fuzzy Systems Engineering: Toward Human-Centric Computing; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Bressane, A.; Mochizuki, P.S.; Caram, R.M.; Roveda, J.A.F. A system for evaluating the impact of noise pollution on the population’s health. Cad. De Saude Publica 2016, 32, e00021215. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Feriadi, H.; Hien, W.N. Modelling thermal comfort for tropics using fuzzy logic. In Proceedings of the Building Simulation, Eindhoven, The Netherlands, 11–14 August 2003; pp. 323–330. [Google Scholar]
- Wänström Lindh, U.; Jägerbrand, A.K. Perceived lighting uniformity on pedestrian roads: From an architectural perspective. Energies 2021, 14, 3647. [Google Scholar] [CrossRef]
- Al-Ghonamy, A. Analysis and evaluation of road traffic noise in Al-Dammam: A business city of the eastern province of KSA. J. Environ. Sci. Technol. 2010, 3, 47–55. [Google Scholar] [CrossRef]
- Robinson, D.W. The concept of noise pollution level. J. Occup. Environ. Med. 1971, 13, 602. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Spagnolo, J.; De Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef]
- Beranek, L.L.; Blackstock, D.T. Acoustics, 1986 Edition by Leo L. Beranek; Acoustical Society of America: Melville, NY, USA, 1988. [Google Scholar]
- Yilmaz, S.; Külekçi, E.A.; Mutlu, B.E.; Sezen, I. Analysis of winter thermal comfort conditions: Street scenarios using ENVI-met model. Environ. Sci. Pollut. Res. 2021, 28, 63837–63859. [Google Scholar] [CrossRef] [PubMed]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminances: A replacement for daylight factors. Energy Build. 2006, 38, 905–913. [Google Scholar] [CrossRef]
- Michael, A.; Heracleous, C. Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus. Energy Build. 2017, 140, 443–457. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Mardaljevic, J.; Rogers, Z. Dynamic daylight performance metrics for sustainable building design. Leukos 2006, 3, 7–31. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.; Song, Y.; Yu, X.; Zhang, J.; Song, D. Psychological influence of sky view factor and green view index on daytime thermal comfort of pedestrians in Shanghai. Urban Clim. 2024, 56, 102014. [Google Scholar] [CrossRef]
- Fluitt, K.F.; Mermagen, T.J.; Letowski, S.; Letowski, T. Auditory Perception in an Open Space: Detection and Recognition; Army Research Laboratory (US): Adelphi, MD, USA, 2015. [Google Scholar]
- Daugintis, R. Effect of Wind on Self-Audition of Human Voice. Master’s Thesis, Aalto University, Espoo, Finland, 2021. [Google Scholar]
- Stokkermans, M.; Vogels, I.; de Kort, Y.; Heynderickx, I. A Comparison of Methodologies to Investigate the Influence of Light on the Atmosphere of a Space. Leukos 2018, 14, 167–191. [Google Scholar] [CrossRef]
- Hegazy, I.R.; Qurnfulah, E.M. Thermal comfort of urban spaces using simulation tools exploring street orientation influence of on the outdoor thermal comfort: A case study of Jeddah, Saudi Arabia. Int. J. Low-Carbon Technol. 2020, 15, 594–606. [Google Scholar] [CrossRef]
- Yuan, J.; Masuko, S.; Shimazaki, Y.; Yamanaka, T.; Kobayashi, T. Evaluation of outdoor thermal comfort under different building external-wall-surface with different reflective directional properties using CFD analysis and model experiment. Build. Environ. 2022, 207, 108478. [Google Scholar] [CrossRef]
- Paiva, K.M.; Cardoso, M.R.A.; Zannin, P.H.T. Exposure to road traffic noise: Annoyance, perception and associated factors among Brazil’s adult population. Sci. Total Environ. 2019, 650, 978–986. [Google Scholar] [CrossRef]
- Yang, W.; Moon, H.J. Combined effects of acoustic, thermal, and illumination conditions on the comfort of discrete senses and overall indoor environment. Build. Environ. 2019, 148, 623–633. [Google Scholar] [CrossRef]
- Guedouh, M.S.; Zemmouri, N. Courtyard building’s morphology impact on thermal and luminous environments in hot and arid region. Energy Procedia 2017, 119, 153–162. [Google Scholar] [CrossRef]
- Chinazzo, G.; Pastore, L.; Wienold, J.; Andersen, M. A field study investigation on the influence of light level on subjective thermal perception in different seasons. In Proceedings of the tenth Windsor Conference, Windsor Great Park, UK, 12–15 April 2018; pp. 12–15. [Google Scholar]
- Yang, W.; Moon, H.J. Cross-modal effects of illuminance and room temperature on indoor environmental perception. Build. Environ. 2018, 146, 280–288. [Google Scholar] [CrossRef]
- Tablada, A.; Carmeliet, J.; Baelmans, M.; Saelens, D. Exterior louvers as a passive cooling strategy in a residential building. In Proceedings of the 26th Conference on Passive and Low Energy Architecture, Quebec City, QC, Canada, 22–24 June 2009. [Google Scholar]
- Tablada, A.; De Troyer, F.; Blocken, B.; Carmeliet, J.; Verschure, H. On natural ventilation and thermal comfort in compact urban environments–the Old Havana case. Build. Environ. 2009, 44, 1943–1958. [Google Scholar] [CrossRef]
- Brown, A.L. Advancing the concepts of soundscapes and soundscape planning. In Proceedings of the Conference of the Australian Acoustical Society (Acoustics 2011), Gold Coast, Australia, 2–4 November 2011. [Google Scholar]
- Henshaw, V. Urban Smellscapes: Understanding and Designing City Smell Environments; Routledge: London, UK, 2013. [Google Scholar]
Areas | Stations | Image Type | Time Range | Recording Duration (min) | Factors Measured | Station Elevation (m) |
---|---|---|---|---|---|---|
Area 1 | 1, 2 | -SVF Hemispherical Image -HDR image | 12:30–12:40 | 3 min per station | Ts, Ta, RH, V, SPL, Illuminance | 1.5 m above the ground |
Area 2 | 3–8 | 12:50–13:40 | ||||
Area 3 | 9–11 | 13:50–14:10 |
Environments | Very | Fairly | Little | Neutral | Little | Fairly | Very | ||
---|---|---|---|---|---|---|---|---|---|
General perception | Uncomfortable | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Comfortable |
Not-suitable | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Suitable | |
Depressive | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Cheerful | |
Thermal environment | Cold | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Hot |
Dry | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Humid | |
Windy | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Mild | |
Luminous environment | No glare | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Glare |
Non-uniform | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Uniform | |
dark | −3 | −2 | −1 | 0 | 1 | 2 | 3 | light | |
Audible environment | Monotonous | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Exciting |
Chaotic | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Calm | |
simple | −3 | −2 | −1 | 0 | 1 | 2 | 3 | varied |
Statistic | Total | Males | Females |
---|---|---|---|
Number of Participants | 106 | 58 | 48 |
Minimum Age | 18 | 18 | 18 |
Maximum Age | 46 | 46 | 45 |
Mean Age | 21.85 | 22.36 | 21.25 |
Standard Deviation | 4.61 | 4.59 | 4.606 |
Rules | Illuminance | SVF | PET | Leq | tMRT | Suitability | Comfort | Mood | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | If | High | Open space | Slightly warm | Noisy | Hot | Then | Little not suitable | Little uncomfortable | Little depressive |
2 | If | High | Open space | Slightly warm | Noisy | Hot | Then | Fairly not suitable | Fairly uncomfortable | Little depressive |
3 | If | High | Medium density | Neutral | Noisy | Hot | Then | Little not suitable | Little uncomfortable | Little depressive |
4 | If | Low | Medium density | Slightly cool | Very noisy | Warm | Then | Fairly not suitable | Fairly uncomfortable | Little depressive |
5 | If | Medium | High density | Slightly warm | Noisy | Hot | Then | Little | Little uncomfortable | Little depressive |
suitable | ||||||||||
6 | If | Low | Medium density | Slightly warm | Noisy | Hot | Then | Little | Little comfortable | Little cheerful |
suitable | ||||||||||
7 | If | High | Open space | Slightly warm | Noisy | Hot | Then | Little not suitable | Very uncomfortable | Little depressive |
8 | If | Medium | Very high density | Warm | Noisy | Hot | Then | Fairly suitable | Little comfortable | Little cheerful |
9 | If | High | High density | Slightly warm | Noisy | Hot | Then | Fairly suitable | Fairly comfortable | Fairly cheerful |
10 | If | Medium | Very high density | Slightly warm | Noisy | Hot | Then | Fairly suitable | Little comfortable | Fairly cheerful |
11 | If | Medium | Very high density | Neutral | Noisy | Neutral | Then | Very suitable | Fairly comfortable | Little depressive |
12 | If | Low | High density | Neutral | Noisy | Neutral | Then | Little suitable | Little comfortable | Little cheerful |
13 | If | Low | High density | Slightly cool | Noisy | Neutral | Then | Little not suitable | Fairly comfortable | Neutral |
Variables | Obs | Minimum | Maximum | Mean | SD | |
---|---|---|---|---|---|---|
Thermal environment | SVF | 11 | 0.458 | 0.998 | 0.71 | 0.22 |
PET (°C) | 11 | 20.7 | 32.2 | 27.8 | 3.2 | |
tMRT (°C) | 11 | 29.4 | 44.4 | 38.7 | 3 | |
Luminous environment | DGP | 11 | 0.123 | 0.269 | 0.22 | 0.04 |
Luminance (lux) | 11 | 206 | 1880 | 1137.47 | 627 | |
Audible environment | Leq (dB) | 11 | 63.6 | 90.8 | 71.8 | 7.3 |
NC (dB) | 11 | 8.5 | 21.4 | 13.8 | 3.3 | |
Lnp (dB) | 11 | 67.2 | 109 | 84.5 | 10.7 |
Area 1 | Area 2 | Area 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Dependent Variables | Predictors | p Value | Model Info | Predictors | p Value | Model Info | Predictors | p Value | Model Info |
Suitability | Thermal sensation | 0.01 | Model Fitting sig = 0.000 pR2 = 1 Parallel lines test = 1 | thermal sensation uniformity | 0.000 0.018 | Model Fitting sig = 0.000 pR2 = 0.635 Parallel lines test = 1 | wind condition uniformity | 0.03 0.01 | Model Fitting sig = 0.05 pR2 = 0.397 Parallel lines test = 0.105 |
Sound excitation | 0.006 | lighting sound excitation | 0.034 0.033 | ||||||
calmness | 0.013 | ||||||||
Comfort | Thermal sensation | 0.013 | Model Fitting sig = 0.000 pR2 = 1 Parallel lines test = 1 | thermal sensation glare | 0.006 0.013 | Model Fitting sig = 0.012 pR2 = 0.491 Parallel lines test = 0.99 | calmness | 0.001 | Model Fitting sig = 0.003 pR2 = 0.519 Parallel lines test = 0.998 |
uniformity sound excitation | 0.033 0.027 | ||||||||
calmness | 0.021 | ||||||||
Mood | Uniformity | 0.011 | Model Fitting sig = 0.000 pR2 = 0.939 Parallel lines test = 0.68 | glare | 0.026 | Model Fitting sig = 0.037 pR2 = 0.478 Parallel lines test = 1 | wind condition | 0.026 | Model Fitting sig = 0.033 pR2 = 0.4 Parallel lines test = 0.925 |
Sound excitation | 0.000 | calmness | 0.012 | sound excitation | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touhami, H.; Berkouk, D.; Bouzir, T.A.K.; Khelil, S.; Gomaa, M.M. The Influence of Multisensory Perception on Student Outdoor Comfort in University Campus Design. Atmosphere 2025, 16, 150. https://doi.org/10.3390/atmos16020150
Touhami H, Berkouk D, Bouzir TAK, Khelil S, Gomaa MM. The Influence of Multisensory Perception on Student Outdoor Comfort in University Campus Design. Atmosphere. 2025; 16(2):150. https://doi.org/10.3390/atmos16020150
Chicago/Turabian StyleTouhami, Hichem, Djihed Berkouk, Tallal Abdel Karim Bouzir, Sara Khelil, and Mohammed M. Gomaa. 2025. "The Influence of Multisensory Perception on Student Outdoor Comfort in University Campus Design" Atmosphere 16, no. 2: 150. https://doi.org/10.3390/atmos16020150
APA StyleTouhami, H., Berkouk, D., Bouzir, T. A. K., Khelil, S., & Gomaa, M. M. (2025). The Influence of Multisensory Perception on Student Outdoor Comfort in University Campus Design. Atmosphere, 16(2), 150. https://doi.org/10.3390/atmos16020150