Suitability of CMIP6 Models Considering Statistical Downscaling Based on GloH2O and E-OBS Dataset in River Basin Districts of the Southeastern Baltic Sea Basin
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
4. Results
4.1. Air Temperature Corrections
4.2. Precipitation Corrections
4.3. Global Climate Models Biases
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parsons, L.A. Implications of CMIP6 Projected Drying Trends for 21st Century Amazonian Drought Risk. Earth’s Future 2020, 8, e2020EF001608. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, C.; Fan, X.; Gou, J.; Zhang, Q.; Zheng, H. Quantifying the Uncertainty Sources of Future Climate Projections and Narrowing Uncertainties with Bias Correction Techniques. Earth’s Future 2022, 10, e2022EF002963. [Google Scholar] [CrossRef]
- Eum, H.-I.; Gupta, A.; Dibike, Y. Effects of Univariate and Multivariate Statistical Downscaling Methods on Climatic and Hydrologic Indicators for Alberta, Canada. J. Hydrol. 2020, 588, 125065. [Google Scholar] [CrossRef]
- Illangasingha, S.; Koike, T.; Rasmy, M.; Tamakawa, K.; Matsuki, H.; Selvarajah, H. A Holistic Approach for Using Global Climate Model (GCM) Outputs in Decision Making. J. Hydrol. 2023, 626, 130213. [Google Scholar] [CrossRef]
- Shukla, R.; Khare, D.; Kumar Dwivedi, A.; Rudra, R.P.; Palmate, S.S.; Ojha, C.S.P.; Singh, V.P. Evaluation of Statistical Downscaling Model’s Performance in Projecting Future Climate Change Scenarios. J. Water Clim. Chang. 2023, 14, 3559–3595. [Google Scholar] [CrossRef]
- Rampal, N.; Hobeichi, S.; Gibson, P.B.; Baño-Medina, J.; Abramowitz, G.; Beucler, T.; González-Abad, J.; Chapman, W.; Harder, P.; Gutiérrez, J.M. Enhancing Regional Climate Downscaling through Advances in Machine Learning. Artif. Intell. Earth Syst. 2024, 3, 230066. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Lucas-Picher, P.; Caya, D. Impacts of Weighting Climate Models for Hydro-Meteorological Climate Change Studies. J. Hydrol. 2017, 549, 534–546. [Google Scholar] [CrossRef]
- Iles, C.E.; Vautard, R.; Strachan, J.; Joussaume, S.; Eggen, B.R.; Hewitt, C.D. The Benefits of Increasing Resolution in Global and Regional Climate Simulations for European Climate Extremes. Geosci. Model Dev. 2020, 13, 5583–5607. [Google Scholar] [CrossRef]
- Boé, J.; Somot, S.; Corre, L.; Nabat, P. Large Discrepancies in Summer Climate Change over Europe as Projected by Global and Regional Climate Models: Causes and Consequences. Clim. Dyn. 2020, 54, 2981–3002. [Google Scholar] [CrossRef]
- Williams, E.; Funk, C.; Peterson, P.; Tuholske, C. High Resolution Climate Change Observations and Projections for the Evaluation of Heat-Related Extremes. Sci. Data 2024, 11, 261. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896. [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research. Reg. Env. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; Moreno, R.; Sánchez, J.L.; García-Ortega, E. Regional Climate Models: 30 Years of Dynamical Downscaling. Atmos. Res. 2020, 235, 104785. [Google Scholar] [CrossRef]
- Munawar, S.; Rahman, G.; Moazzam, M.F.U.; Miandad, M.; Ullah, K.; Al-Ansari, N.; Linh, N.T.T. Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region. Atmosphere 2022, 13, 898. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, J.; Yang, Z.; Hu, Y.; Li, J. Gridded Statistical Downscaling Based on Interpolation of Parameters and Predictor Locations for Summer Daily Precipitation in North China. J. Appl. Meteorol. Climatol. 2019, 58, 2295–2311. [Google Scholar] [CrossRef]
- Sunyer, M.A.; Gregersen, I.B.; Rosbjerg, D.; Madsen, H.; Luchner, J.; Arnbjerg-Nielsen, K. Comparison of Different Statistical Downscaling Methods to Estimate Changes in Hourly Extreme Precipitation Using RCM Projections from ENSEMBLES: STATISTICAL DOWNSCALING METHODS FOR EXTREME PRECIPITATION. Int. J. Clim. 2015, 35, 2528–2539. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, P.; Singh, V.P.; Fan, K.; Huang, J. Spatial Downscaling of TRMM -based Precipitation Data Using Vegetative Response in Xinjiang, China. Int. J. Climatol. 2017, 37, 3895–3909. [Google Scholar] [CrossRef]
- Zhu, X.; Qiu, X.; Zeng, Y.; Ren, W.; Tao, B.; Pan, H.; Gao, T.; Gao, J. High-resolution Precipitation Downscaling in Mountainous Areas over China: Development and Application of a Statistical Mapping Approach. Int. J. Climatol. 2018, 38, 77–93. [Google Scholar] [CrossRef]
- Werner, A.T.; Cannon, A.J. Hydrologic Extremes—An Intercomparison of Multiple Gridded Statistical Downscaling Methods. Hydrol. Earth Syst. Sci. 2016, 20, 1483–1508. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Sobie, S.R.; Murdock, T.Q. High-Resolution Statistical Downscaling in Southwestern British Columbia. J. Appl. Meteorol. Climatol. 2017, 56, 1625–1641. [Google Scholar] [CrossRef]
- Fauzi, F.; Kuswanto, H.; Atok, R.M. Bias Correction and Statistical Downscaling of Earth System Models Using Quantile Delta Mapping (QDM) and Bias Correction Constructed Analogues with Quantile Mapping Reordering (BCCAQ). J. Phys. Conf. Ser. 2020, 1538, 012050. [Google Scholar] [CrossRef]
- Murdock, T.Q.; Cannon, A.J.; Sobie, S.R. Statistical Down-Scaling of Future Climate Projections for North America; Report on Contract No: KM040-131148/A; Prepared for Environment Canada; Pacific Climate Impacts Consortium: Victoria, BC, Canada, 2014. [Google Scholar]
- Gebrechorkos, S.; Leyland, J.; Slater, L.; Wortmann, M.; Ashworth, P.J.; Bennett, G.L.; Boothroyd, R.; Cloke, H.; Delorme, P.; Griffith, H.; et al. A High-Resolution Daily Global Dataset of Statistically Downscaled CMIP6 Models for Climate Impact Analyses. Sci. Data 2023, 10, 611. [Google Scholar] [CrossRef]
- Jalili Pirani, F.; Bakhtiari, S.; Najafi, M.R.; Shrestha, R.R.; Nouri, M.S. The Effects of Climate Change on Flood-Generating Mechanisms in the Assiniboine and Red River Basins. In Proceedings of the AGY Fall Meeting 2021, New Orleans, LA, USA, 13–17 December 2021. NH15F-0514. [Google Scholar]
- Geography, S.O.; Gebrechorkos, S.; Leyland, J.; Darby, S.; Parsons, D. High-Resolution Daily Global Climate Dataset of BCCAQ Statistically Downscaled CMIP6 Models for the EVOFLOOD Project; NERC EDS Centre for Environmental Data Analysis, University of Southampton: Southampton, UK, 2022. [Google Scholar]
- Copernicus Climate Change Service E-OBS Daily Gridded Meteorological Data for Europe from 1950 to Present Derived from in-Situ Observations 2020. Available online: https://cds.climate.copernicus.eu/datasets/insitu-gridded-observations-europe?tab=overview (accessed on 26 August 2024). [CrossRef]
- Bandhauer, M.; Isotta, F.; Lakatos, M.; Lussana, C.; Båserud, L.; Izsák, B.; Szentes, O.; Tveito, O.E.; Frei, C. Evaluation of Daily Precipitation Analyses in E-OBS (V19.0e) and ERA5 by Comparison to Regional High-resolution Datasets in European Regions. Int. J. Climatol. 2022, 42, 727–747. [Google Scholar] [CrossRef]
- Vrac, M.; Vaittinada Ayar, P. Influence of Bias Correcting Predictors on Statistical Downscaling Models. J. Appl. Meteorol. Climatol. 2017, 56, 5–26. [Google Scholar] [CrossRef]
- Baño-Medina, J.; Manzanas, R.; Gutiérrez, J.M. On the Suitability of Deep Convolutional Neural Networks for Continental-Wide Downscaling of Climate Change Projections. Clim. Dyn. 2021, 57, 2941–2951. [Google Scholar] [CrossRef]
- Maurer, E.P.; Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R. The Utility of Daily Large-Scale Climate Data in the Assessment of Climate Change Impacts on Daily Streamflow in California. Hydrol. Earth Syst. Sci. 2010, 14, 1125–1138. [Google Scholar] [CrossRef]
- Hunter, R.D.; Meentemeyer, R.K. Climatologically Aided Mapping of Daily Precipitation and Temperature. J. Appl. Meteorol. 2005, 44, 1501–1510. [Google Scholar] [CrossRef]
- Behnke, R.; Vavrus, S.; Allstadt, A.; Albright, T.; Thogmartin, W.E.; Radeloff, V.C. Evaluation of Downscaled, Gridded Climate Data for the Conterminous United States. Ecol. Appl. 2016, 26, 1338–1351. [Google Scholar] [CrossRef] [PubMed]
- Mankin, K.R.; Mehan, S.; Green, T.R.; Barnard, D.M. Review of Gridded Climate Products and Their Use in Hydrological Analyses Reveals Overlaps, Gaps, and Need for More Objective Approach to Model Forcings. Hydrol. Earth Syst. Sci. Discuss. 2025, 29, 85–108. [Google Scholar] [CrossRef]
- Cornes, R.C.; Van Der Schrier, G.; Van Den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. JGR Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Moreno, A.; Hasenauer, H. Spatial Downscaling of European Climate Data. Int. J. Climatol. 2016, 36, 1444–1458. [Google Scholar] [CrossRef]
- Brunner, M.I.; Götte, J.; Schlemper, C.; Van Loon, A.F. Hydrological Drought Generation Processes and Severity Are Changing in the Alps. Geophys. Res. Lett. 2023, 50, e2022GL101776. [Google Scholar] [CrossRef]
- Bakke, S.J.; Ionita, M.; Tallaksen, L.M. Recent European Drying and Its Link to Prevailing Large-Scale Atmospheric Patterns. Sci. Rep. 2023, 13, 21921. [Google Scholar] [CrossRef] [PubMed]
- Rettie, F.M.; Gayler, S.; Weber, T.K.D.; Tesfaye, K.; Streck, T. High-Resolution CMIP6 Climate Projections for Ethiopia Using the Gridded Statistical Downscaling Method. Sci. Data 2023, 10, 442. [Google Scholar] [CrossRef]
- Hagemann, S.; Stacke, T. Complementing ERA5 and E-OBS with High-Resolution River Discharge over Europe. Oceanologia 2023, 65, 230–248. [Google Scholar] [CrossRef]
- Laiti, L.; Mallucci, S.; Piccolroaz, S.; Bellin, A.; Zardi, D.; Fiori, A.; Nikulin, G.; Majone, B. Testing the Hydrological Coherence of High-Resolution Gridded Precipitation and Temperature Data Sets. Water Resour. Res. 2018, 54, 1999–2016. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, K.; Ren, K.; Liu, J.; Deng, C.; Jin, Y. Deep Learning in Statistical Downscaling for Deriving High Spatial Resolution Gridded Meteorological Data: A Systematic Review. ISPRS J. Photogramm. Remote Sens. 2024, 208, 14–38. [Google Scholar] [CrossRef]
- Caldas-Alvarez, A.; Feldmann, H.; Lucio-Eceiza, E.; Pinto, J.G. Convection-Parameterized and Convection-Permitting Modelling of Heavy Precipitation in Decadal Simulations of the Greater Alpine Region with COSMO-CLM. Weather Clim. Dynam. 2023, 4, 543–565. [Google Scholar] [CrossRef]
- Landelius, T.; Dahlgren, P.; Gollvik, S.; Jansson, A.; Olsson, E. A High-resolution Regional Reanalysis for Europe. Part 2: 2D Analysis of Surface Temperature, Precipitation and Wind. Q. J. R. Meteorol. Soc. 2016, 142, 2132–2142. [Google Scholar] [CrossRef]
- Niu, X.; Wang, S.; Tang, J.; Lee, D.; Gutowski, W.; Dairaku, K.; McGregor, J.; Katzfey, J.; Gao, X.; Wu, J.; et al. Ensemble Evaluation and Projection of Climate Extremes in China Using RMIP Models. Int. J. Climatol. 2018, 38, 2039–2055. [Google Scholar] [CrossRef]
- He, S.; Yang, J.; Bao, Q.; Wang, L.; Wang, B. Fidelity of the Observational/Reanalysis Datasets and Global Climate Models in Representation of Extreme Precipitation in East China. J. Clim. 2019, 32, 195–212. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Shu, Z.; Wang, Y.; Bao, Z.; Liu, C.; Zhou, X.; Wang, G. Evaluation of the Ability of CMIP6 Global Climate Models to Simulate Precipitation in the Yellow River Basin, China. Front. Earth Sci. 2021, 9, 751974. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Zhang, G.J.; Xing, C.; Xia, W.; Yang, M. Light Rain Exacerbates Extreme Humid Heat. Nat. Commun. 2024, 15, 7326. [Google Scholar] [CrossRef] [PubMed]
- Pendergrass, A.G.; Knutti, R. The Uneven Nature of Daily Precipitation and Its Change. Geophys. Res. Lett. 2018, 45, 11980–11988. [Google Scholar] [CrossRef]
- Mpelasoka, F.S.; Chiew, F.H.S. Influence of Rainfall Scenario Construction Methods on Runoff Projections. J. Hydrometeorol. 2009, 10, 1168–1183. [Google Scholar] [CrossRef]
- Tefera, G.W.; Ray, R.L.; Wootten, A.M. Evaluation of Statistical Downscaling Techniques and Projection of Climate Extremes in Central Texas, USA. Weather Clim. Extrem. 2024, 43, 100637. [Google Scholar] [CrossRef]
- Petrovic, D.; Fersch, B.; Kunstmann, H. Heat Wave Characteristics: Evaluation of Regional Climate Model Performances for Germany. Nat. Hazards Earth Syst. Sci. 2024, 24, 265–289. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akstinas, V.; Gurjazkaitė, K.; Meilutytė-Lukauskienė, D.; Jakimavičius, D. Suitability of CMIP6 Models Considering Statistical Downscaling Based on GloH2O and E-OBS Dataset in River Basin Districts of the Southeastern Baltic Sea Basin. Atmosphere 2025, 16, 229. https://doi.org/10.3390/atmos16020229
Akstinas V, Gurjazkaitė K, Meilutytė-Lukauskienė D, Jakimavičius D. Suitability of CMIP6 Models Considering Statistical Downscaling Based on GloH2O and E-OBS Dataset in River Basin Districts of the Southeastern Baltic Sea Basin. Atmosphere. 2025; 16(2):229. https://doi.org/10.3390/atmos16020229
Chicago/Turabian StyleAkstinas, Vytautas, Karolina Gurjazkaitė, Diana Meilutytė-Lukauskienė, and Darius Jakimavičius. 2025. "Suitability of CMIP6 Models Considering Statistical Downscaling Based on GloH2O and E-OBS Dataset in River Basin Districts of the Southeastern Baltic Sea Basin" Atmosphere 16, no. 2: 229. https://doi.org/10.3390/atmos16020229
APA StyleAkstinas, V., Gurjazkaitė, K., Meilutytė-Lukauskienė, D., & Jakimavičius, D. (2025). Suitability of CMIP6 Models Considering Statistical Downscaling Based on GloH2O and E-OBS Dataset in River Basin Districts of the Southeastern Baltic Sea Basin. Atmosphere, 16(2), 229. https://doi.org/10.3390/atmos16020229