Jump in Tropospheric Methane Concentrations in 2020–2021 and Slowdown in 2022–2024: New Hypotheses on Causation
Abstract
:1. Introduction
1.1. The Year 2020
1.2. 2021 and 2022
1.3. Changes in Sinks but Also in Sources
2. The Background Role of Sulfur Pollution
2.1. The Sulfur Hypothesis
2.2. Sulfate Deposition over the Continents Reduces Biogenic CH4 Emissions
2.3. The 1991 Mount Pinatubo and Cerro Hudson Eruptions Plus the 1783–1784 Laki Eruption
2.4. Additional Hypothesis: Wildfires, Global Warming, and Decrease in NOx Emissions
3. Can the Significantly Reduced Growth Rates of tCH4 in 2023 and in 2024 Be Explained?
3.1. What Other Reasons Are There for the Fall of the tCH4 Growth Rate in 2023 and 2024 Other than Lower CH4 Emissions from Wetlands?
3.2. Our Hypothesis
- Effect of increased humidity
- Effects of increased temperature
- Effects of clouds and of UV radiation from sunlight
4. Discussion, Research Gaps, and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stevenson, D.S.; Derwent, R.G.; Wild, O.; Collins, W.J. COVID-19 lockdown emission reductions have the potential to explain over half of the coincident increase in global atmospheric methane. Atmos. Chem. Phys. 2022, 22, 14243–14252. [Google Scholar]
- Peng, S.; Lin, X.; Tho, R.L. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 2022, 612, 477–482. [Google Scholar] [CrossRef]
- Qu, Z.; Jacob, D.J.; Zhang, Y.; Shen, L.; Varon, D.J.; Lu, X.; Scarpelli, T.; Bloom, A.; Worden, J.; Parker, R.J. Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. Environ. Res. Lett. 2022, 17, 094003. [Google Scholar]
- Feng, L.; Palmer, P.I.; Parker, R.J.; Lunt, M.F.; Bösch, H. Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. Atmos. Chem. Phys. 2023, 23, 4863–4880. [Google Scholar]
- Crutzen, P.J. On the role of CH 4 in atmospheric chemistry: Sources, sinks and possible reductions in anthropogenic sources. Ambio 1995, 24, 52–55. [Google Scholar]
- Saunois, M.; Martinez, A.; Poulter, B.; Zhang, Z.; Raymond, P.; Regnier, P.; Canadell, J.G.; Jackson, R.B.; Patra, P.K.; Bousquet, P. Global Methane Budget 2000–2020. Earth Syst. Sci. Data Discuss. 2024, 2024, 1–147. [Google Scholar]
- Zhai, S.; Wang, X.; McConnell, J.R.; Geng, L.; Cole-Dai, J.; Sigl, M.; Chellman, N.; Sherwen, T.; Pound, R.; Fujita, K. Anthropogenic impacts on tropospheric reactive chlorine since the preindustrial. Geophys. Res. Lett. 2021, 48, e2021GL093808. [Google Scholar] [CrossRef]
- Hossaini, R.; Chipperfield, M.P.; Saiz-Lopez, A.; Fernandez, R.; Monks, S.; Feng, W.; Brauer, P.; Von Glasow, R. A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation. J. Geophys. Res. Atmos. 2016, 121, 14271–14297. [Google Scholar]
- Steinbrecht, W.; Kubistin, D.; Plass-Dülmer, C.; Davies, J.; Tarasick, D.W.; von Der Gathen, P.; Deckelmann, H.; Jepsen, N.; Kivi, R.; Lyall, N. COVID-19 crisis reduces free tropospheric ozone across the Northern Hemisphere. Geophys. Res. Lett. 2021, 48, e2020GL091987. [Google Scholar] [CrossRef]
- Miyazaki, K.; Bowman, K.; Sekiya, T.; Takigawa, M.; Neu, J.L.; Sudo, K.; Osterman, G.; Eskes, H. Global tropospheric ozone responses to reduced NOx emissions linked to the COVID-19 worldwide lockdowns. Sci. Adv. 2021, 7, eabf7460. [Google Scholar]
- Bouarar, I.; Gaubert, B.; Brasseur, G.P.; Steinbrecht, W.; Doumbia, T.; Tilmes, S.; Liu, Y.; Stavrakou, T.; Deroubaix, A.; Darras, S. Ozone anomalies in the free troposphere during the COVID-19 pandemic. Geophys. Res. Lett. 2021, 48, e2021GL094204. [Google Scholar]
- Liu, Y.; Wang, T.; Stavrakou, T.; Elguindi, N.; Doumbia, T.; Granier, C.; Bouarar, I.; Gaubert, B.; Brasseur, G.P. Diverse response of surface ozone to COVID-19 lockdown in China. Sci. Total Environ. 2021, 789, 147739. [Google Scholar]
- Mertens, M.; Jöckel, P.; Matthes, S.; Nützel, M.; Grewe, V.; Sausen, R. COVID-19 induced lower-tropospheric ozone changes. Environ. Res. Lett. 2021, 16, 064005. [Google Scholar]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [PubMed]
- Tavella, R.A.; da Silva Júnior, F.M.R. Watch out for trends: Did ozone increased or decreased during the COVID-19 pandemic? Environ. Sci. Pollut. Res. 2021, 28, 67880–67885. [Google Scholar]
- Wang, Y.; Zhu, S.; Ma, J.; Shen, J.; Wang, P.; Wang, P.; Zhang, H. Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Sci. Total Environ. 2021, 768, 144796. [Google Scholar]
- Zhang, Y.; Jacob, D.J.; Lu, X.; Maasakkers, J.D.; Scarpelli, T.R.; Sheng, J.-X.; Shen, L.; Qu, Z.; Sulprizio, M.P.; Chang, J. Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmos. Chem. Phys. 2021, 21, 3643–3666. [Google Scholar]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar]
- MacKay, K.; Lavoie, M.; Bourlon, E.; Atherton, E.; O’Connell, E.; Baillie, J.; Fougère, C.; Risk, D. Methane emissions from upstream oil and gas production in Canada are underestimated. Sci. Rep. 2021, 11, 8041. [Google Scholar]
- Yin, Y.; Chevallier, F.; Ciais, P.; Bousquet, P.; Saunois, M.; Zheng, B.; Worden, J.; Bloom, A.; Parker, R.J.; Jacob, D.J. Accelerating methane growth rate from 2010 to 2017: Leading contributions from the tropics and East Asia. Atmos. Chem. Phys. 2021, 21, 12631–12647. [Google Scholar]
- Rosentreter, J.A.; Borges, A.V.; Deemer, B.R.; Holgerson, M.A.; Liu, S.; Song, C.; Melack, J.; Raymond, P.A.; Duarte, C.M.; Allen, G.H. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 2021, 14, 225–230. [Google Scholar]
- Song, Y.; Song, C.; Hou, A.; Sun, L.; Wang, X.; Ma, X.; Jiang, L.; Liu, C.; Gao, J. Temperature, soil moisture, and microbial controls on CO2 and CH4 emissions from a permafrost peatland. Environ. Prog. Sustain. Energy 2021, 40, e13693. [Google Scholar]
- Bansal, S.; van der Burg, M.P.; Fern, R.; Jones, J.; Lo, R.; McKenna, O.; Tangen, B.; Zhang, Z.; Gleason, R. Large increases in methane emissions expected from North America’s largest wetland complex. Sci. Adv. 2023, 9, eade1112. [Google Scholar] [PubMed]
- Drinkwater, A.; Palmer, P.; Feng, L.; Arnold, T.; Lan, X.; Michel, S.E.; Parker, R.; Boesch, H. Atmospheric data support a multi-decadal shift in the global methane budget towards natural tropical emissions. Atmos. Chem. Phys. 2023, 23, 8429–8452. [Google Scholar]
- Qu, Z.; Jacob, D.J.; Bloom, A.A.; Worden, J.R.; Parker, R.J.; Boesch, H. Inverse modeling of 2010–2022 satellite observations shows that inundation of the wet tropics drove the 2020–2022 methane surge. Proc. Natl. Acad. Sci. USA 2024, 121, e2402730121. [Google Scholar] [PubMed]
- Wu, J.; Luo, S.; Turner, Z.-A.; Wunch, D.; García, O.; Hase, F.; Kivi, R.; Ohyama, H.; Morino, I. The Post-2020 Surge in Global Atmospheric Methane Observed in Ground-based Observations. ESS Open Arch. Eprints 2024, 264, 26426238. [Google Scholar]
- Zhang, Z.; Poulter, B.; Feldman, A.F.; Ying, Q.; Ciais, P.; Peng, S.; Li, X. Recent intensification of wetland methane feedback. Nat. Clim. Change 2023, 13, 430–433. [Google Scholar]
- Xu, M.; Zhang, J.; Zhang, Z.; Wang, M.; Chen, H.; Peng, C.; Yu, D.; Zhan, H.; Zhu, Q. Global responses of wetland methane emissions to extreme temperature and precipitation. Environ. Res. 2024, 252, 118907. [Google Scholar]
- Statista. Number of Flood Disasters Worldwide from 1990 to 2023. 2024. Available online: https://www.statista.com/statistics/1339730/number-of-flood-disasters-worldwide/ (accessed on 14 October 2024).
- Atlas Magazine, Unprecedented Floods in Dubai, Oman, Bahrain and Qatar. 2024. Available online: https://www.atlas-mag.net/en/category/regions-geographiques/moyen-orient/unprecedented-floods-in-dubai-oman-bahrain-and-qatar (accessed on 17 October 2024).
- Bartlett, K.B.; Harriss, R.C. Review and assessment of methane emissions from wetlands. Chemosphere 1993, 26, 261–320. [Google Scholar]
- Knox, S.H.; Jackson, R.B.; Poulter, B.; McNicol, G.; Fluet-Chouinard, E.; Zhang, Z.; Hugelius, G.; Bousquet, P.; Canadell, J.G.; Saunois, M. FLUXNET-CH4 synthesis activity: Objectives, observations, and future directions. Bull. Am. Meteorol. Soc. 2019, 100, 2607–2632. [Google Scholar]
- Yvon-Durocher, G.; Allen, A.P.; Bastviken, D.; Conrad, R.; Gudasz, C.; St-Pierre, A.; Thanh-Duc, N.; Del Giorgio, P.A. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 2014, 507, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Fung, I.; John, J.; Lerner, J.; Matthews, E.; Prather, M.; Steele, L.; Fraser, P. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. Atmos. 1991, 96, 13033–13065. [Google Scholar] [CrossRef]
- WMO. World Meteorological Organization—WMO Confirms 2024 as Warmest Year on Record at About 1.55 °C Above Pre-Industrial Level. 2025. Available online: https://wmo.int/news/media-centre/wmo-confirms-2024-warmest-year-record-about-155degc-above-pre-industrial-level (accessed on 15 January 2025).
- Copernicus. The 2024 Annual Climate Summary—Global Climate Highlights 2024. 2025. Available online: https://climate.copernicus.eu/global-climate-highlights-2024 (accessed on 15 January 2025).
- NOAA. National Oceanic and Atmospheric Administration. Global Monitoring Laboratory—Earth System Research Laboratories. 2023. Available online: https://gml.noaa.gov/ccgg/trends_ch4/ (accessed on 6 February 2024).
- GOSAT. The Greenhouse Gases Observing SATellite (GOSAT) “IBUKI”, CH4 Growth Level Trend over Year 2024. 2025. Available online: https://www.gosat.nies.go.jp/en/recent-global-ch4.html (accessed on 6 February 2025).
- McDuffie, E.E.; Smith, S.J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E.A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin, R.V. A global anthropogenic emission inventory of atmospheric pollutants from sector-and fuel-specific sources (1970–2017): An application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12, 3413–3442. [Google Scholar] [CrossRef]
- Hansen, J.E.; Lacis, A.A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change. Nature 1990, 346, 713–719. [Google Scholar] [CrossRef]
- Hansen, J.; Kharecha, P.; Sato, M. Climate forcing growth rates: Doubling down on our Faustian bargain. Environ. Res. Lett. 2013, 8, 10.1088. [Google Scholar] [CrossRef]
- IMO. International Maritime Organization. IMO 2020—Cutting Sulphur Oxide Emissions. 1997. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx (accessed on 16 June 2022).
- Aas, W.; Mortier, A.; Bowersox, V.; Cherian, R.; Faluvegi, G.; Fagerli, H.; Hand, J.; Klimont, Z.; Galy-Lacaux, C.; Lehmann, C.M. Global and regional trends of atmospheric sulfur. Sci. Rep. 2019, 9, 953. [Google Scholar] [CrossRef]
- Zhong, Q.; Shen, H.; Yun, X.; Chen, Y.; Ren, Y.; Xu, H.; Shen, G.; Du, W.; Meng, J.; Li, W.; et al. Global sulfur dioxide emissions and the driving forces. Environ. Sci. Technol. 2020, 54, 6508–6517. [Google Scholar]
- Li, P.; Lin, Z.; Du, H.; Feng, T.; Zuo, J. Do environmental taxes reduce air pollution? Evidence from fossil-fuel power plants in China. J. Environ. Manag. 2021, 295, 113112. [Google Scholar]
- Li, C.; McLinden, C.; Fioletov, V.; Krotkov, N.; Carn, S.; Joiner, J.; Streets, D.; He, H.; Ren, X.; Li, Z.; et al. India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. Sci. Rep. 2017, 7, 14304. [Google Scholar]
- Amritha, S.; Patel, V.; Kuttippurath, J. The COVID-19 lockdown induced changes of SO2 pollution in its Human-made global hotspots. Glob. Transit. 2024, 6, 152–163. [Google Scholar]
- EMSA. European Maritime Safety Agency, EU & Regional SOx Total Emissions [kg]. 2023. Available online: https://www.emsa.europa.eu/eumaritimeprofile.html (accessed on 15 October 2024).
- CEDS. Sulphur Dioxide (SO2): Community Emissions Data System (CEDS) "air_pollution_ceds" [Dataset]. Processed by Our World in Data. 2024. Available online: https://ourworldindata.org/explorers/air-pollution (accessed on 22 October 2024).
- Partanen, A.-I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K.E.; Laakso, L.; Korhonen, H. Climate and air quality trade-offs in altering ship fuel sulfur content. Atmos. Chem. Phys. 2013, 13, 12059–12071. [Google Scholar]
- Zhang, Y.; Eastham, S.D.; Lau, A.K.; Fung, J.C.; Selin, N.E. Global air quality and health impacts of domestic and international shipping. Environ. Res. Lett. 2021, 16, 084055. [Google Scholar]
- Corbett, J.J.; Winebrake, J.J.; Carr, E.W.; Jalkanen, J.-P.; Johansson, L.; Prank, M.; Sofiev, M.; Winebrake, S.G.; Karppinen, A. Health Impacts Associated with Delay of MARPOL Global Sulphur Standards. International Maritime Organization. Air Pollution and Energy Efficiency. Available online: https://www.imo.org/en/OurWork/Environment/Pages/Air-Pollution.aspx (accessed on 1 January 2016).
- Gao, Y.; Wang, Y.; Lee, H.-S.; Jin, P. Significance of anaerobic oxidation of methane (AOM) in mitigating methane emission from major natural and anthropogenic sources: A review of AOM rates in recent publications. Environ. Sci. Adv. 2022, 1, 401–425. [Google Scholar]
- Gauci, V.; Matthews, E.; Dise, N.; Walter, B.; Koch, D.; Granberg, G.; Vile, M. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA 2004, 101, 12583–12587. [Google Scholar]
- Vile, M.A.; Bridgham, S.D.; Wieder, R.K.; Novák, M. Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Dise, N.B.; Verry, E.S. Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain. Biogeochemistry 2001, 53, 143–160. [Google Scholar]
- Gauci, V.; Dise, N.; Blake, S. Long-term suppression of wetland methane flux following a pulse of simulated acid rain. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Gauci, V.; Fowler, D.; Chapman, S.J.; Dise, N.B. Sulfate deposition and temperature controls on methane emission and sulfur forms in peat. Biogeochemistry 2005, 71, 141–162. [Google Scholar] [CrossRef]
- Gauci, V.; Dise, N.; Fowler, D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Glob. Biogeochem. Cycles 2002, 16, 4-1–4-12. [Google Scholar]
- Denier Van der Gon, H.; Neue, H. Impact of gypsum application on the methane emission from a wetland rice field. Glob. Biogeochem. Cycles 1994, 8, 127–134. [Google Scholar]
- van Grinsven, S.; Sinninghe Damsté, J.S.; Abdala Asbun, A.; Engelmann, J.C.; Harrison, J.; Villanueva, L. Methane oxidation in anoxic lake water stimulated by nitrate and sulfate addition. Environ. Microbiol. 2020, 22, 766–782. [Google Scholar] [PubMed]
- Park, R.J.; Jacob, D.J.; Field, B.D.; Yantosca, R.M.; Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Ying, Q.; Zhang, J.; Zhang, H.; Hu, J.; Kleeman, M.J. Atmospheric age distribution of primary and secondary inorganic aerosols in a polluted atmosphere. Environ. Sci. Technol. 2021, 55, 5668–5676. [Google Scholar]
- van Donkelaar, A.; Martin, R.V.; Leaitch, W.R.; Macdonald, A.; Walker, T.; Streets, D.G.; Zhang, Q.; Dunlea, E.J.; Jimenez, J.L.; Dibb, J.; et al. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmos. Chem. Phys. 2008, 8, 2999–3014. [Google Scholar]
- Qu, Y.; An, J.; He, Y.; Zheng, J. An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia. J. Environ. Sci. 2016, 44, 13–25. [Google Scholar]
- Mallik, C.; Lal, S.; Naja, M.; Chand, D.; Venkataramani, S.; Joshi, H.; Pant, P. Enhanced SO2 concentrations observed over northern India: Role of long-range transport. Int. J. Remote Sens. 2013, 34, 2749–2762. [Google Scholar]
- Henmi, T. Long-range transport model of SO2 and sulfate and its application to the eastern United States. J. Geophys. Res. Ocean. 1980, 85, 4436–4442. [Google Scholar]
- Xu, L.; Liu, X.; Gao, H.; Yao, X.; Zhang, D.; Bi, L.; Liu, L.; Zhang, J.; Zhang, Y.; Wang, Y.; et al. Long-range transport of anthropogenic air pollutants into the marine air: Insight into fine particle transport and chloride depletion on sea salts. Atmos. Chem. Phys. Discuss. 2021, 21, 17715–17726. [Google Scholar]
- Wang, Q.; Zhuang, G.; Huang, K.; Liu, T.; Lin, Y.; Deng, C.; Fu, Q.; Fu, J.S.; Chen, J.; Zhang, W.; et al. Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation and primary pollutants via long-range transport. Atmos. Res. 2016, 169, 86–95. [Google Scholar]
- Gauci, V.; Blake, S.; Stevenson, D.S.; Highwood, E.J. Halving of the northern wetland CH4 source by a large Icelandic volcanic eruption. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- NASA. Global Effects of Mount Pinatubo. 2011. Available online: https://earthobservatory.nasa.gov/images/1510/global-effects-of-mount-pinatubo (accessed on 2 July 2023).
- Guo, S.; Bluth, G.J.; Rose, W.I.; Watson, I.M.; Prata, A.J. Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochem. Geophys. Geosyst. 2004, 5. [Google Scholar] [CrossRef]
- Case, P.A.; Colarco, P.R.; Toon, O.B.; Newman, P.A. Simulating the volcanic sulfate aerosols from the 1991 eruption of Cerro Hudson and their impact on the 1991 ozone hole. Geophys. Res. Lett. 2024, 51, e2023GL106619. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Masaire, K.A.; Lang, P.M.; Tans, P.P.; Steele, L.P.; Nisbet, E.G. A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophys. Res. Lett. 1994, 21, 45–48. [Google Scholar] [CrossRef]
- Hogan, K.B.; Harriss, R.C. Comment on ‘A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992’ by EJ Dlugokencky et al. Geophys. Res. Lett. 1994, 21, 2445–2446. [Google Scholar] [CrossRef]
- Bândă, N.; Krol, M.; van Weele, M.; Van Noije, T.; Le Sager, P.; Röckmann, T. Can we explain the observed methane variability after the Mount Pinatubo eruption? Atmos. Chem. Phys. 2016, 16, 195–214. [Google Scholar]
- Dlugokencky, E.J.; Dutton, E.G.; Novelli, P.C.; Tans, P.P.; Masarie, K.A.; Lantz, K.O.; Madronich, S. Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux. Geophys. Res. Lett. 1996, 23, 2761–2764. [Google Scholar] [CrossRef]
- Bândă, N.; Krol, M.; Van Weele, M.; Van Noije, T.; Röckmann, T. Analysis of global methane changes after the 1991 Pinatubo volcanic eruption. Atmos. Chem. Phys. 2013, 13, 2267–2281. [Google Scholar] [CrossRef]
- Bândă, N. Variations in the Atmospheric Methane Budget After the Mount Pinatubo Eruption. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2015. [Google Scholar]
- Fong, B.; Newhouse, K.; Ali, H. Effect of relative humidity on HCl formation from the reaction of H2SO4 and HNO3 with NaCl particles. React. Kinet. Mech. Catal. 2015, 116, 273–283. [Google Scholar] [CrossRef]
- Etheridge, D.M.; Steele, L.P.; Francey, R.J.; Langenfelds, R.L. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. 1998, 103, 15979–15993. [Google Scholar] [CrossRef]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Rowlinson, M.J.; Rap, A.; Arnold, S.R.; Pope, R.J.; Chipperfield, M.P.; McNorton, J.; Forster, P.; Gordon, H.; Pringle, K.J.; Feng, W.; et al. Impact of El Niño–Southern Oscillation on the interannual variability of methane and tropospheric ozone. Atmos. Chem. Phys. 2019, 19, 8669–8686. [Google Scholar] [CrossRef]
- Pugliese, G.; Ingrisch, J.; Meredith, L.K.; Pfannerstill, E.Y.; Klüpfel, T.; Meeran, K.; Byron, J.; Purser, G.; Gil-Loaiza, J.; Van Haren, J.; et al. Effects of drought and recovery on soil volatile organic compound fluxes in an experimental rainforest. Nat. Commun. 2023, 14, 5064. [Google Scholar]
- Zheng, B.; Chevallier, F.; Yin, Y.; Ciais, P.; Fortems-Cheiney, A.; Deeter, M.N.; Parker, R.J.; Wang, Y.; Worden, H.M.; Zhao, Y. Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth Syst. Sci. Data 2019, 11, 1411–1436. [Google Scholar]
- Hoesly, R.; Smith, S.; Prime, N.; Ahsan, H.; Suchyta, H.; O’Rourke, P.; Crippa, M.; Klimont, Z.; Guizzardi, D.; Behrendt, J.; et al. CEDS v_2024_11_25 Gridded Emissions Data 0.5 Degree. 2024. Available online: https://zenodo.org/records/12803197 (accessed on 12 February 2025).
- Wan, N.; Xiong, X.; Kluitenberg, G.J.; Hutchinson, J.; Aiken, R.; Zhao, H.; Lin, X. Estimation of biomass burning emission of NO2 and CO from 2019–2020 Australia fires based on satellite observations. Atmos. Chem. Phys. 2023, 23, 711–724. [Google Scholar] [CrossRef]
- Pope, R.J.; Kerridge, B.J.; Siddans, R.; Latter, B.G.; Chipperfield, M.P.; Arnold, S.R.; Ventress, L.J.; Pimlott, M.A.; Graham, A.M.; Knappett, D.S.; et al. Large enhancements in southern hemisphere satellite-observed trace gases due to the 2019/2020 Australian wildfires. J. Geophys. Res. Atmos. 2021, 126, e2021JD034892. [Google Scholar]
- Kganyago, M.; Shikwambana, L. Did COVID-19 lockdown restrictions have an impact on biomass burning emissions in Sub-Saharan Africa? Aerosol Air Qual. Res. 2021, 21, 200470. [Google Scholar]
- Albores, I.R.; Buchholz, R.R.; Ortega, I.; Emmons, L.; Hannigan, J.; Lacey, F.; Pfister, G.; Tang, W.; Worden, H. Continental-scale atmospheric impacts of the 2020 western US wildfires. Atmos. Environ. 2023, 294, 119436. [Google Scholar]
- Zheng, B.; Ciais, P.; Chevallier, F.; Yang, H.; Canadell, J.G.; Chen, Y.; van der Velde, I.R.; Aben, I.; Chuvieco, E.; Davis, S.J.; et al. Record-high CO2 emissions from boreal fires in 2021. Science 2023, 379, 912–917. [Google Scholar] [CrossRef]
- Bao, X.; Zhou, W.; Xu, L.; Zheng, Z. A meta-analysis on plant volatile organic compound emissions of different plant species and responses to environmental stress. Environ. Pollut. 2022, 318, 120886. [Google Scholar] [CrossRef]
- WMO. World Meteorological Organization. Past Eight Years Confirmed to be the Eight Warmest on Record. 2023. Available online: https://wmo.int/news/media-centre/past-eight-years-confirmed-be-eight-warmest-record (accessed on 1 May 2023).
- Miyazaki, K.; Eskes, H.; Sudo, K.; Boersma, K.F.; Bowman, K.; Kanaya, Y. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmos. Chem. Phys. 2017, 17, 807–837. [Google Scholar]
- Liu, F.; Zhang, Q.; Zheng, B.; Tong, D.; Yan, L.; Zheng, Y.; He, K. Recent reduction in NOx emissions over China: Synthesis of satellite observations and emission inventories. Environ. Res. Lett. 2016, 11, 114002. [Google Scholar]
- IMO. International Maritime Organization, Nitrogen Oxides (NOx)—Regulation 13. 2008. Available online: https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx (accessed on 8 July 2023).
- Feng, L.; Palmer, P.; Zhu, S.; Parker, R.; Liu, Y. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. Nat. Commun. 2022, 13, 1378. [Google Scholar]
- Global-Methane-Pledge. The Global Methane Pledge. 2021. Available online: https://www.globalmethanepledge.org/ (accessed on 27 February 2022).
- Schaefer, H.; Smale, D.; Nichol, S.E.; Bromley, T.M.; Brailsford, G.W.; Martin, R.J.; Moss, R.; Englund Michel, S.; White, J.W. Limited impact of El Niño–Southern Oscillation on variability and growth rate of atmospheric methane. Biogeosciences 2018, 15, 6371–6386. [Google Scholar]
- Zhang, Z.; Zimmermann, N.E.; Calle, L.; Hurtt, G.; Chatterjee, A.; Poulter, B. Enhanced response of global wetland methane emissions to the 2015–2016 El Niño-Southern Oscillation event. Environ. Res. Lett. 2018, 13, 074009. [Google Scholar]
- Turner, A.J.; Fung, I.; Naik, V.; Horowitz, L.W.; Cohen, R.C. Modulation of hydroxyl variability by ENSO in the absence of external forcing. Proc. Natl. Acad. Sci. USA 2018, 115, 8931–8936. [Google Scholar]
- WMO. World Meteorological Organization—Climate Change Impacts Grip Globe in 2024. 2024. Available online: https://wmo.int/media/news/climate-change-impacts-grip-globe-2024 (accessed on 24 January 2025).
- Floodlist. Flood List. 2025. Available online: https://floodlist.com/ (accessed on 24 January 2025).
- Mongabay. At Least 11,500 Deaths Linked to Extreme Weather in 2024. 2025. Available online: https://news.mongabay.com/short-article/deaths-linked-to-extreme-weather-in-2024/ (accessed on 24 January 2025).
- Global-Energy-Monitor. Global Coal Plant Tracker. 2024. Available online: https://globalenergymonitor.org/projects/global-coal-plant-tracker/ (accessed on 26 January 2025).
- Bank, W. Global Gas Flaring Jumps to Highest Level Since 2019. 2024. Available online: https://www.worldbank.org/en/news/press-release/2024/06/20/global-gas-flaring-jumps-to-highest-level-since-2019 (accessed on 24 January 2025).
- OWD, Our World in Data. China Has Reduced Sulphur Dioxide Emissions by More than Two-Thirds in the Last 15 Years. 2024. Available online: https://ourworldindata.org/data-insights/china-has-reduced-sulphur-dioxide-emissions-by-more-than-two-thirds-in-the-last-15-years (accessed on 20 January 2025).
- Fioletov, V.; McLinden, C.A.; Griffin, D.; Abboud, I.; Krotkov, N.; Leonard, P.J.; Li, C.; Joiner, J.; Theys, N.; Carn, S. Multi-Satellite Air Quality Sulfur Dioxide (SO2) Database Long-Term L4 Global V2; Leonard, P., Ed.; Goddard Earth Science Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2022. [CrossRef]
- Fioletov, V.; McLinden, C.A.; Griffin, D.; Abboud, I.; Krotkov, N.; Leonard, P.J.; Li, C.; Joiner, J.; Theys, N.; Carn, S. Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements. Earth Syst. Sci. Data Discuss. 2022, 15, 75–93. [Google Scholar]
- Nicely, J.M.; Salawitch, R.J.; Canty, T.; Anderson, D.; Arnold, S.R.; Chipperfield, M.P.; Emmons, L.K.; Flemming, J.; Huijnen, V.; Kinnison, D.E.; et al. Quantifying the causes of differences in tropospheric OH within global models. J. Geophys. Res. Atmos. 2017, 122, 1983–2007. [Google Scholar]
- Naik, V.; Voulgarakis, A.; Fiore, A.M.; Horowitz, L.; Lamarque, J.-F.; Lin, M.; Prather, M.J.; Young, P.; Bergmann, D.; Cameron-Smith, P.; et al. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 5277–5298. [Google Scholar]
- Turner, A.J.; Frankenberg, C.; Wennberg, P.O.; Jacob, D.J. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc. Natl. Acad. Sci. USA 2017, 114, 5367–5372. [Google Scholar]
- Turner, A.J.; Frankenberg, C.; Kort, E.A. Interpreting contemporary trends in atmospheric methane. Proc. Natl. Acad. Sci. USA 2019, 116, 2805–2813. [Google Scholar]
- Zhao, Y.; Saunois, M.; Bousquet, P.; Lin, X.; Berchet, A.; Hegglin, M.I.; Canadell, J.G.; Jackson, R.B.; Dlugokencky, E.J.; Langenfelds, R.L.; et al. Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets. Atmos. Chem. Phys. 2020, 20, 9525–9546. [Google Scholar]
- Wang, Y.; Ming, T.; Li, W.; Yuan, Q.; De Richter, R.; Davies, P.; Caillol, S. Atmospheric Removal of Methane by enhancing the natural hydroxyl radical sink. Greenh. Gases Sci. Technol. 2022, 12, 784–795. [Google Scholar]
- Liu, Y.; Yao, X.; Zhou, L.; Ming, T.; Li, W.; de Richter, R. Removal of Atmospheric Methane by Increasing Hydroxyl Radicals via a Water Vapor Enhancement Strategy. Atmosphere 2024, 15, 1046. [Google Scholar] [CrossRef]
- Spivakovsky, C.M.; Logan, J.A.; Montzka, S.A.; Balkanski, Y.J.; Foreman-Fowler, M.; Jones, D.B.; Horowitz, L.W.; Fusco, A.C.; Brenninkmeijer, C.A.; Prather, M.J.; et al. Three-dimensional climatological distribution of tropospheric OH: Update and evaluation. J. Geophys. Res. Atmos. 2000, 105, 8931–8980. [Google Scholar]
- Voulgarakis, A.; Naik, V.; Lamarque, J.F.; Shindell, D.T.; Young, P.J.; Prather, M.J.; Wild, O.; Field, R.D.; Bergmann, D.; Cameron-Smith, P.; et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 2013, 13, 2563–2587. [Google Scholar]
- Nicely, J.M.; Canty, T.P.; Manyin, M.; Oman, L.D.; Salawitch, R.J.; Steenrod, S.D.; Strahan, S.E.; Strode, S.A. Changes in global tropospheric OH expected as a result of climate change over the last several decades. J. Geophys. Res. Atmos. 2018, 123, 10774–10795. [Google Scholar]
- Holmes, C.D. Methane feedback on atmospheric chemistry: Methods, models, and mechanisms. J. Adv. Model. Earth Syst. 2018, 10, 1087–1099. [Google Scholar]
- López-Comí, L.; Morgenstern, O.; Zeng, G.; Masters, S.L.; Querel, R.R.; Nedoluha, G.E. Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand. Atmos. Chem. Phys. 2016, 16, 14599–14619. [Google Scholar]
- Voulgarakis, A.; Wild, O.; Savage, N.H.; Carver, G.D.; Pyle, J.A. Clouds, photolysis and regional tropospheric ozone budgets. Atmos. Chem. Phys. 2009, 9, 8235–8246. [Google Scholar]
- Johnson, C.E.; Stevenson, D.S.; Collins, W.J.; Derwent, R.G. Role of climate feedback on methane and ozone studied with a coupled Ocean-Atmosphere-Chemistry model. Geophys. Res. Lett. 2001, 28, 1723–1726. [Google Scholar]
- Lawrence, M.; Jöckel, P.; Von Kuhlmann, R. What does the global mean OH concentration tell us? Atmos. Chem. Phys. 2001, 1, 37–49. [Google Scholar]
- Heinze, C.; Eyring, V.; Friedlingstein, P.; Jones, C.; Balkanski, Y.; Collins, W.; Fichefet, T.; Gao, S.; Hall, A.; Ivanova, D.; et al. ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth Syst. Dyn. 2019, 10, 379–452. [Google Scholar]
- Goessling, H.F.; Rackow, T.; Jung, T. Recent global temperature surge intensified by record-low planetary albedo. Science 2025, 387, 68–73. [Google Scholar] [PubMed]
- Monks, S.A.; Arnold, S.R.; Emmons, L.K.; Law, K.S.; Turquety, S.; Duncan, B.N.; Flemming, J.; Huijnen, V.; Tilmes, S.; Langner, J.; et al. Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic. Atmos. Chem. Phys. 2015, 15, 3575–3603. [Google Scholar]
- Tie, X.; Madronich, S.; Walters, S.; Zhang, R.; Rasch, P.; Collins, W. Effect of clouds on photolysis and oxidants in the troposphere. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Wild, O.; Zhu, X.; Prather, M.J. Fast-J: Accurate simulation of in-and below-cloud photolysis in tropospheric chemical models. J. Atmos. Chem. 2000, 37, 245–282. [Google Scholar]
- Voulgarakis, A.; Savage, N.H.; Wild, O.; Braesicke, P.; Young, P.J.; Carver, G.D.; Pyle, J.A. Interannual variability of tropospheric composition: The influence of changes in emissions, meteorology and clouds. Atmos. Chem. Phys. 2010, 10, 2491–2506. [Google Scholar]
- Holmes, C.D.; Prather, M.J.; Søvde, O.A.; Myhre, G. Future methane, hydroxyl, and their uncertainties: Key climate and emission parameters for future predictions. Atmos. Chem. Phys. 2012, 12, 931. [Google Scholar]
- Lelieveld, J.; Crutzen, P. The role of clouds in tropospheric photochemistry. J. Atmos. Chem. 1991, 12, 229–267. [Google Scholar]
- Hansen, J.E.; Sato, M.; Simons, L.; Nazarenko, L.S.; Sangha, I.; Kharecha, P.; Zachos, J.C.; von Schuckmann, K.; Loeb, N.G.; Osman, M.B.; et al. Global warming in the pipeline. Oxf. Open Clim. Change 2023, 3, kgad008. [Google Scholar]
- IPCC. AR6 WG1, Climate Change 2021, The Physical Science Basis—Summary for Policymakers. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf (accessed on 11 August 2021).
- Forster, P.M.; Smith, C.J.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.; Palmer, M.D.; et al. Indicators of Global Climate Change 2022: Annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2023, 15, 2295–2327. [Google Scholar]
- Wright, C.J.; Thornton, J.A.; Jaeglé, L.; Cao, Y.; Zhu, Y.; Liu, J.; Jones, R., II; Holzworth, R.; Rosenfeld, D.; Wood, R.; et al. Lightning declines over shipping lanes following regulation of fuel sulfur emissions. Atmos. Chem. Phys. 2025, 25, 2937–2946. [Google Scholar]
- Sharma, R.K.; Cox, M.S.; Oglesby, C.; Dhillon, J.S. Revisiting the role of sulfur in crop production: A narrative review. J. Agric. Food Res. 2024, 15, 101013. [Google Scholar]
- Feinberg, A.; Stenke, A.; Peter, T.; Hinckley, E.L.S.; Driscoll, C.T.; Winkel, L.H. Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Commun. Earth Environ. 2021, 2, 101. [Google Scholar]
- Hinckley, E.L.S.; Crawford, J.T.; Fakhraei, H.; Driscoll, C.T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 2020, 13, 597–604. [Google Scholar]
- Shafiq, B.A.; Nawaz, F.; Majeed, S.; Aurangzaib, M.; Al Mamun, A.; Ahsan, M.; Ahmad, K.S.; Shehzad, M.A.; Ali, M.; Hashim, S.; et al. Sulfate-based fertilizers regulate nutrient uptake, photosynthetic gas exchange, and enzymatic antioxidants to increase sunflower growth and yield under drought stress. J. Soil Sci. Plant Nutr. 2021, 21, 2229–2241. [Google Scholar]
- Abadía, J.; Álvarez-Fernández, A.; Morales, F.; Sanz, M.; Abadía, A. Correction of iron chlorosis by foliar sprays. Acta Hortic. 2002, 594, 115–121. [Google Scholar]
- Naik, V.; Horowitz, L.W.; Fiore, A.M.; Ginoux, P.; Mao, J.; Aghedo, A.M.; Levy, H. Impact of preindustrial to present-day changes in short-lived pollutant emissions on atmospheric composition and climate forcing. J. Geophys. Res. Atmos. 2013, 118, 8086–8110. [Google Scholar]
- Rigby, M.; Montzka, S.A.; Prinn, R.G.; White, J.W.; Young, D.; O’doherty, S.; Lunt, M.F.; Ganesan, A.L.; Manning, A.J.; Simmonds, P.G.; et al. Role of atmospheric oxidation in recent methane growth. Proc. Natl. Acad. Sci. USA 2017, 114, 5373–5377. [Google Scholar]
- Murguia-Flores, F.; Ganesan, A.L.; Arndt, S.; Hornibrook, E.R. Global uptake of atmospheric methane by soil from 1900 to 2100. Glob. Biogeochem. Cycles 2021, 35, e2020GB006774. [Google Scholar]
- Yu, L.; Huang, Y.; Zhang, W.; Li, T.; Sun, W. Methane uptake in global forest and grassland soils from 1981 to 2010. Sci. Total Environ. 2017, 607, 1163–1172. [Google Scholar]
- Ni, X.; Groffman, P.M. Declines in methane uptake in forest soils. Proc. Natl. Acad. Sci. USA 2018, 115, 8587–8590. [Google Scholar]
- Worden, J.R.; Bloom, A.A.; Pandey, S.; Jiang, Z.; Worden, H.M.; Walker, T.W.; Houweling, S.; Röckmann, T. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat. Commun. 2017, 8, 2227. [Google Scholar] [PubMed]
- Oh, Y.; Zhuang, Q.; Welp, L.R.; Liu, L.; Lan, X.; Basu, S.; Dlugokencky, E.J.; Bruhwiler, L.; Miller, J.B.; Michel, S.E.; et al. Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase. Commun. Earth Environ. 2022, 3, 159. [Google Scholar]
- Nisbet, E.G.; Dlugokencky, E.J.; Bousquet, P. Methane on the rise—Again. Science 2014, 343, 493–495. [Google Scholar]
- Brief, C. How Low-Sulphur Shipping Rules Are Affecting Global Warming. 2023. Available online: www.carbonbrief.org/analysis-how-low-sulphur-shipping-rules-are-affecting-global-warming/ (accessed on 5 July 2023).
- Wang, Y.; Jacob, D.J. Anthropgenic forcing on tropospheric ozone and OH since preindustrial times. J. Geophys. Res. Atmos. 1998, 103, 31123–31135. [Google Scholar]
- Laughner, J.L.; Neu, J.L.; Schimel, D.; Wennberg, P.O.; Barsanti, K.; Bowman, K.W.; Chatterjee, A.; Croes, B.E.; Fitzmaurice, H.L.; Henze, D.K.; et al. Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2109481118. [Google Scholar] [PubMed]
- Keith, D.W.; Wagner, G.; Zabel, C.L. Solar geoengineering reduces atmospheric carbon burden. Nat. Clim. Change 2017, 7, 617–619. [Google Scholar]
- Visioni, D.; Pitari, G.; Aquila, V.; Tilmes, S.; Cionni, I.; Di Genova, G.; Mancini, E. Sulfate geoengineering impact on methane transport and lifetime: Results from the Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Chem. Phys. 2017, 17, 11209–11226. [Google Scholar]
- Kravitz, B.; Robock, A.; Oman, L.; Stenchikov, G.; Marquardt, A.B. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Yoshioka, M.; Grosvenor, D.P.; Booth, B.B.; Morice, C.P.; Carslaw, K.S. Warming effects of reduced sulfur emissions from shipping. EGUsphere 2024, 24, 13681–13692. [Google Scholar] [CrossRef]
- Jordan, G.; Henry, M. IMO2020 regulations accelerate global warming by up to 3 years in UKESM1. Earth’s Future 2024, 12, e2024EF005011. [Google Scholar] [CrossRef]
- Gettelman, A.; Christensen, M.W.; Diamond, M.S.; Gryspeerdt, E.; Manshausen, P.; Stier, P.; Watson-Parris, D.; Yang, M.; Yoshioka, M.; Yuan, T. Has reducing ship emissions brought forward global warming? Geophys. Res. Lett. 2024, 51, e2024GL109077. [Google Scholar] [CrossRef]
- Quaglia, I.; Visioni, D. Modeling 2020 regulatory changes in international shipping emissions helps explain 2023 anomalous warming. EGUsphere 2024, 15, 1527–1541. [Google Scholar] [CrossRef]
- Yuan, T.; Song, H.; Oreopoulos, L.; Wood, R.; Bian, H.; Breen, K.; Chin, M.; Yu, H.; Barahona, D.; Meyer, K.; et al. Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming. Commun. Earth Environ. 2024, 5, 281. [Google Scholar] [CrossRef]
- Diamond, M.S. Detection of large-scale cloud microphysical changes within a major shipping corridor after implementation of the International Maritime Organization 2020 fuel sulfur regulations. Atmos. Chem. Phys. 2023, 23, 8259–8269. [Google Scholar] [CrossRef]
- Watson-Parris, D.; Wilcox, L.J.; Stjern, C.W.; Allen, R.J.; Persad, G.; Bollasina, M.A.; Ekman, A.M.; Iles, C.E.; Joshi, M.; Lund, M.T.; et al. Weak surface temperature effects of recent reductions in shipping SO2 emissions, with quantification confounded by internal variability. EGUsphere 2024, 2024, 1–30. [Google Scholar] [CrossRef]
- Hansen, J.E.; Kharecha, P.; Sato, M.; Tselioudis, G.; Kelly, J.; Bauer, S.E.; Ruedy, R.; Jeong, E.; Jin, Q.; Rignot, E.; et al. Global Warming Has Accelerated: Are the United Nations and the Public Well-Informed? Environ. Sci. Policy Sustain. Dev. 2025, 67, 6–44. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.S.; Gryspeerdt, E.; Yamaguchi, T.; Feingold, G. Radiative forcing from the 2020 shipping fuel regulation is large but hard to detect. Commun. Earth Environ. 2025, 6, 18. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Crutzen, P.J. Influence of NO x emissions from ships on tropospheric photochemistry and climate. Nature 1999, 402, 167–170. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanimoto, H. Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone–challenges toward a denitrified society. Atmos. Environ. 2022, 277, 119033. [Google Scholar]
- Voosen, P. In a Paradox, Cleaner Air Is Now Adding to Global Warming, 20 July 2022. 2022. Available online: https://www.science.org/content/article/paradox-cleaner-air-now-adding-global-warming (accessed on 1 July 2023).
- Forster, P.M.; Forster, H.I.; Evans, M.J.; Gidden, M.J.; Jones, C.D.; Keller, C.A.; Lamboll, R.D.; Quéré, C.L.; Rogelj, J.; Rosen, D.; et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Change 2020, 10, 913–919. [Google Scholar]
- Shen, L.; Peng, S.; Zhang, Z.; Tong, C.; Lin, J.; Li, Y.; Zhong, H.; Ma, S.; Zhuang, M.; Gauci, V. The large role of declining atmospheric sulfate deposition and rising CO2 concentrations in stimulating future wetland CH4 emissions. Sci. Adv. 2025, 11, eadn1056. [Google Scholar] [CrossRef] [PubMed]
Years | |||||
---|---|---|---|---|---|
Hypothesis (Due to) | 2020 | 2021 | 2022 | 2023 | 2024 |
Observed CH4 growth (ppb) [4]→ | 14.81 | 17.64 | 13.25 | 8.39 | 3 to 8 a,b |
Inundations, increased area of shallower waters → more CH4 production from wetlands | [2,3,4,24,25] | [4,25] | [25] | -- | -- |
Global temperature increases → more CH4 production from wetlands | [2,3] | [4] | -- | This article | This article |
Reductions in NOx emissions during COVID-19 lockdowns → less °OH → more CH4 | [1,2,4] | -- | -- | -- | -- |
Lower global NOx emissions → less °OH → more CH4 | [2,25] | [4,25] | [25] | -- | -- |
IMO-2020 Rule → less SO4 deposition on water bodies → more CH4 production from wetlands | This article | This article | This article | This article | This article |
Global temperature increases → more humidity → more °OH → less CH4 | -- | -- | -- | This article | This article |
Reduction in cloud cover → more UV → more °OH → less CH4 | -- | -- | -- | This article | This article |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, T.; de Richter, R.; Felzer, B.S.; Li, W. Jump in Tropospheric Methane Concentrations in 2020–2021 and Slowdown in 2022–2024: New Hypotheses on Causation. Atmosphere 2025, 16, 406. https://doi.org/10.3390/atmos16040406
Ming T, de Richter R, Felzer BS, Li W. Jump in Tropospheric Methane Concentrations in 2020–2021 and Slowdown in 2022–2024: New Hypotheses on Causation. Atmosphere. 2025; 16(4):406. https://doi.org/10.3390/atmos16040406
Chicago/Turabian StyleMing, Tingzhen, Renaud de Richter, Benjamin S. Felzer, and Wei Li. 2025. "Jump in Tropospheric Methane Concentrations in 2020–2021 and Slowdown in 2022–2024: New Hypotheses on Causation" Atmosphere 16, no. 4: 406. https://doi.org/10.3390/atmos16040406
APA StyleMing, T., de Richter, R., Felzer, B. S., & Li, W. (2025). Jump in Tropospheric Methane Concentrations in 2020–2021 and Slowdown in 2022–2024: New Hypotheses on Causation. Atmosphere, 16(4), 406. https://doi.org/10.3390/atmos16040406