Kinetics of Heterogeneous Reaction of Ozone with Oleic Acid and Its Dependence on Droplet Size, Relative Humidity, and Ozone Concentration
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Oleic Acid Droplets with Uniform Sizes
2.2. Measurements for Droplet Morphologies
2.3. Apparatus and Conditions for the IR Measurements
3. Results and Discussion
3.1. Rate Constant and Uptake Coefficient
3.2. Size Effect
3.2.1. Size of Oleic Acid Droplets
3.2.2. Dependences of kapp and γ on Droplet Size
3.3. RH Effect
3.4. O3 Concentration Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. Science 2001, 294, 2119–2124. [Google Scholar] [PubMed]
- Carlton, A.G.; Wiedinmyer, C.; Kroll, J.H. A Review of Secondary Organic Aerosol (SOA) Formation from Isoprene. Atmos. Chem. Phys. 2009, 9, 4987–5005. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic Aerosol and Global Climate Modelling: A Review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar]
- Rudich, Y. Laboratory Perspectives on the Chemical Transformations of Organic Matter in Atmospheric Particles. Chem. Rev. 2003, 103, 5097–5124. [Google Scholar] [CrossRef]
- Hung, H.M.; Katrib, Y.; Martin, S.T. Products and Mechanisms of the Reaction of Oleic Acid with Ozone and Nitrate Radical. J. Phys. Chem. A 2005, 109, 4517–4530. [Google Scholar]
- Hung, H.M.; Ariya, P. Oxidation of Oleic Acid and Oleic Acid/Sodium Chloride(aq) Mixture Droplets with Ozone: Changes of Hygroscopicity and Role of Secondary Reactions. J. Phys. Chem. A 2007, 111, 620–632. [Google Scholar]
- Goldstein, A.H.; Galbally, I.E. Known and Unexplored Organic Constituents in the Earth’s Atmosphere. Environ. Sci. Technol. 2007, 41, 1514–1521. [Google Scholar]
- Sorooshian, A.; Lu, M.; Brechtel, F.J.; Jonsson, H.; Feingold, G.; Flagan, R.C.; Seinfeld, J.H. On the Source of Organic Acid Aerosol Layers above Clouds. Environ. Sci. Technol. 2007, 41, 4647–4654. [Google Scholar]
- Gallimore, P.J.; Achakulwisut, P.; Pope, F.D.; Davies, J.F.; Spring, D.R.; Kalberer, M. Importance of Relative Humidity in the Oxidative Ageing of Organic Aerosols: Case Study of the Ozonolysis of Maleic Acid Aerosol. Atmos. Chem. Phys. 2011, 11, 12181–12195. [Google Scholar] [CrossRef]
- Li, Y.C.; Yu, Y.Z. Simultaneous Determination of Mono- and Dicarboxylic Acids, ω-Oxo-carboxylic Acids, Midchain Ketocarboxylic Acids, and Aldehydes in Atmospheric Aerosol Samples. Environ. Sci. Technol. 2005, 39, 7616–7624. [Google Scholar]
- Chebbi, A.; Carlier, P. Carboxylic Acids in the Troposphere, Occurrence, Sources, and Sinks: A Review. Atmos. Environ. 1996, 30, 4233–4249. [Google Scholar] [CrossRef]
- Young, J.A. Chemical Laboratory Information Profile: Oleic Acid. J. Chem. Educ. 2002, 79, 24. [Google Scholar] [CrossRef]
- Hung, H.M.; Tang, C.W. Effects of Temperature and Physical State on Heterogeneous Oxidation of Oleic Acid Droplets with Ozone. J. Phys. Chem. A 2010, 114, 13104–13112. [Google Scholar] [CrossRef] [PubMed]
- Zahardis, J.; Petrucci, G.A. The Oleic Acid-Ozone Heterogeneous Reaction System: Products, Kinetics, Secondary Chemistry, and Atmospheric Implications of a Model System—A Review. Atmos. Chem. Phys. 2007, 7, 1237–1274. [Google Scholar] [CrossRef]
- Al-Kindi, S.S.; Pope, F.D.; Beddows, D.C.; Bloss, W.J.; Harrison, R.M. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions. Atmos. Chem. Phys. 2016, 16, 15561–15579. [Google Scholar] [CrossRef]
- Gallimore, P.J.; Griffiths, P.T.; Pope, F.D.; Reid, J.P.; Kalberer, M. Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition. J. Geophys. Res. Atmos. 2017, 122, 4364–4377. [Google Scholar] [CrossRef]
- Berkemeier, T.; Mishra, A.; Mattei, C.; Huisman, A.J.; Krieger, U.K.; Poschl, U. Ozonolysis of Oleic Acid Aerosol Revisited: Multiphase Chemical Kinetics and Reaction Mechanisms. ACS Earth Space Chem. 2021, 5, 3313–3323. [Google Scholar] [CrossRef]
- Zhou, Z.; Lakey, P.S.J.; Domaros, M.; Wise, N.; Tobias, D.J.; Shiraiwa, M.; Abbatt, J.P.D. Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling. Environ. Sci. Technol. 2022, 56, 7716–7728. [Google Scholar] [CrossRef]
- Thornberry, T.; Abbatt, J.P.D. Heterogeneous Reaction of Ozone with Liquid Unsaturated Fatty Acids: Detailed Kinetics and Gas-phase Product Studies. Phys. Chem. Chem. Phys. 2004, 6, 84–93. [Google Scholar] [CrossRef]
- Knopf, D.A.; Anthony, L.M.; Bertram, A.K. Reactive Uptake of O3 by Multicomponent and Multiphase Mixtures Containing Oleic Acid. J. Phys. Chem. A 2005, 109, 5579–5589. [Google Scholar] [CrossRef]
- Morris, J.W.; Davidovits, P.; Jayne, J.T.; Jimenez, J.L.; Shi, Q.; Kolb, C.E.; Worsnop, D.R.; Barney, W.S.; Cass, G. Kinetics of Submicron Oleic Acid Aerosols with ozone: A Novel Aerosol Mass Spectrometric Technique. Geophys. Res. Lett. 2002, 29, 135715. [Google Scholar] [CrossRef]
- Katrib, Y.; Martin, S.T.; Hung, H.M.; Rudich, Y.; Zhang, H.; Slowik, J.G.; Davidovits, P.; Jayne, J.T.; Worsnop, D.R. Products and Mechanisms of Ozone Reactions with Oleic Acid for Aerosol Particles Having Core-shell Morphologies. J. Phys. Chem. A 2004, 108, 6686–6695. [Google Scholar]
- Hearn, J.D.; Smith, G.D. Kinetics and Product Studies for Ozonolysis Reactions of Organic Particles Using Aerosol CIMS. J. Phys. Chem. A 2004, 108, 10019–10029. [Google Scholar] [CrossRef]
- Hearn, J.D.; Lovett, A.J.; Smith, G.D. Ozonolysis of Oleic Acid Particles: Evidence for A Surface Reaction and Secondary Reactions Involving Criegee Intermediates. Phys. Chem. Chem. Phys. 2005, 7, 501–511. [Google Scholar]
- Ziemann, P. Aerosol Products, Mechanisms, and Kinetics of Heterogeneous Reactions of Ozone with Oleic Acid in Pure and Mixed Particles. Faraday Discuss. 2005, 130, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Hearn, J.D.; Smith, G.D. Ozonolysis of Mixed Oleic Acid/n-Docosane Particles: The Roles of Phase, Morphology, and Metastable States. J. Phys. Chem. A 2007, 111, 11059–11065. [Google Scholar]
- Nash, D.G.; Tolocka, M.P.; Baer, T. The Uptake of O3 by Myristic Acid-Oleic Acid Mixed Particles: Evidence for Solid Surface Layers. Phys. Chem. Chem. Phys. 2006, 8, 4468–4475. [Google Scholar]
- Moise, T.; Rudich, Y. Reactive Uptake of Ozone by Aerosol-Associated Unsaturated Fatty Acids: Kinetics, Mechanism, and Products. J. Phys. Chem. A 2002, 106, 6469–6476. [Google Scholar] [CrossRef]
- Segal-Rosenheimer, M.; Dubowski, Y. Heterogeneous Ozonolysis of Cypermethrin Using Real-Time Monitoring FTIR Techniques. J. Phys. Chem. C 2007, 111, 11682–11691. [Google Scholar] [CrossRef]
- Najera, J.J.; Percival, C.J.; Horn, A.B. Infrared Spectroscopic Studies of the Heterogeneous Reaction of Ozone with Dry Maleic and Fumaric Acid Aerosol Particles. Phys. Chem. Chem. Phys. 2009, 11, 9093–9103. [Google Scholar]
- Petrick, L.; Dubowski, Y. Heterogeneous Oxidation of Squalene Film by Ozone under Various Indoor Conditions. Indoor Air 2009, 19, 381–391. [Google Scholar]
- Davies, H.L.; O’Leary, C.; Dillon, T.; Shaw, D.R.; Shaw, M.; Mehra, A.; Phillips, G.; Carslaw, N. A Measurement and Modeling Investigation of the Indoor Air Chemistry Following Cooking Activities. Environ. Sci. Process. Impacts 2023, 25, 1532–1548. [Google Scholar] [PubMed]
- Tang, R.; Sahu, R.; Su, Y.; Milsom, A.; Mishra, A.; Berkemeier, T.; Pfrang, C. Impact of Cooking Methods on Indoor Air Quality: A Comparative Study of Particulate Matter (PM) and Volatile Organic Compound (VOC) Emissions. Indoor Air 2024, 2024, 6355613. [Google Scholar] [CrossRef]
- Carter, T.J.; Shaw, D.R.; Carslaw, D.C.; Carslaw, N. Indoor Cooking and Cleaning As a Source of Ourdoor Air Pollution in Urban Environments. Environ. Sci. Process. Impacts 2024, 26, 975–990. [Google Scholar] [CrossRef]
- Kruza, M.; Lewis, A.C.; Morrison, G.C.; Carslaw, N. Impact of surface ozone interactions on indoor air chemistry: A modeling study. Indoor Air 2017, 27, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Coffaro, B.; Weisei, C. Reaction and Product of Squalene and Ozone: A Review. Environ. Sci. Technol. 2022, 56, 7396–7411. [Google Scholar]
- Zhang, M.; Xiong, J.; Liu, Y.; Misztal, P.; Goldstein, A.H. Physical-Chemical Coupoing Model for Characterizating the Reaction of Ozone with Squalene in Realistic Indoor Enviroments. Environ. Sci. Technol. 2021, 55, 1690–1698. [Google Scholar]
- Zhang, M.; Gao, Y.; Xiong, J. Characterization of the Off-body Squalene Ozonolysis on Indoors Surfaces. Chemosphere 2022, 291, 132772. [Google Scholar] [CrossRef]
- Lakey, P.S.J.; Wisthaler, A.; Berkemeier, T.; Mikoviny, T.; Shirawa, M. Chemical Kinetics of Multiphase Reactions between Ozone and Human Skin Lipids: Implications for Indoor Air Quality and Health Effects. Indoor Air 2017, 27, 816–828. [Google Scholar] [CrossRef]
- Gao, X.Y.; Leng, C.B.; Zeng, G.; Fu, D.; Zhang, Y.H.; Liu, Y. Ozone Initiated Heterogeneous Oxidation of Unsaturated Carboxylic Acids by ATR-FTIR Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 177–183. [Google Scholar] [CrossRef]
- Palen, E.J.; Allen, D.T.; Pandis, S.N.; Paulson, S.; Seinfeld, J.H.; Flagan, R.C. FTIR Analysis of Aerosol Formed in the Photooxidation of 1-Octene. Atmos. Environ. 1993, 27, 1471–1477. [Google Scholar] [CrossRef]
- Liu, Y.; Cain, J.P.; Wang, H.; Laskin, A. Kinetic Study of Heterogeneous Reaction of Deliquesced NaCl Particles with Gaseous HNO3 Using Particle-on-Substrate Stagnation Flow Reactor Approach. J. Phys. Chem. A 2007, 111, 10026–10043. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Woods, E.; DeForest, C.L.; Baer, T.; Miller, R.E. Reactive Uptake of Ozone by Oleic Acid Aerosol Particles: Application of Single-Particle Mass Spectrometry to Heterogeneous Reaction Kinetics. J. Phys. Chem. A 2002, 106, 8085–8095. [Google Scholar] [CrossRef]
- Poschl, U.; Letzel, T.; Schauer, C.; Niessner, R. Interaction of Ozone and Water Vapor with Spark Discharge Soot Aerosol Particles Coated with Benzo-a-pyrene: O3 and H2O Adsorption, Benzo-apyrene Degradation, and Atmospheric Implications. J. Phys. Chem. A 2001, 105, 4029–4041. [Google Scholar] [CrossRef]
- Kwamena, N.O.A.; Staikova, M.G.; Donaldson, D.J.; George, I.J.; Abbatt, J.P.D. Role of the Aerosol Substrate in the Heterogeneous Ozonation Reactions of Surface-Bound PAHs. J. Phys. Chem. A 2007, 111, 11050–11058. [Google Scholar] [CrossRef]
- Kahan, T.F.; Kwamena, N.O.A.; Donaldson, D.J. Heterogeneous Ozonation Kinetics of Polycyclic Aromatic Hydrocarbons on Organic Films. Atmos. Environ. 2006, 40, 3448–3459. [Google Scholar] [CrossRef]
- Mmereki, B.T.; Donaldson, D.J.; Gilman, J.B.; Eliason, T.L.; Vaida, V. Kinetics and Products of the Reaction of Gas-Phase Ozone with Anthracene Adsorbed at the Air-Aqueous Interface. Atmos. Environ. 2004, 38, 6091–6103. [Google Scholar] [CrossRef]
- Kwamena, N.O.A.; Thornton, J.A.; Abbatt, J.P.D. Kinetics of Surface-Bound Benzo-a-Pyrene and Ozone on Solid Organic and Salt Aerosols. J. Phys. Chem. A 2004, 108, 11626–11634. [Google Scholar] [CrossRef]
Suspended | [O3] | kapp (s−1) ×10−3 | γ × 10−4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Diameter (μm) | r (μm) | h (μm) | SA/V (cm−1) × 105 | RH (%) | Molecules/cm3 | 1743 cm−1 | 1710 cm−1 | 1743 cm−1 | 1710 cm−1 |
0.1 | 0.08 ± 0.02 | 0.05 ± 0.01 | 4.9 ± 1.5 | 0 | 8.8 × 1012 | 4.5 ± 0.1 | 4.6 ± 0.6 | 4.5 ± 0.1 | 4.6 ± 0.5 |
0.18 | 0.14 ± 0.03 | 0.09 ± 0.02 | 2.8 ± 0.8 | 0 | 8.8 × 1012 | 3.9 ± 0.1 | 4.0 ± 0.4 | 6.9 ± 0.3 | 7.1 ± 0.6 |
0.32 | 0.27 ± 0.05 | 0.14 ± 0.03 | 1.7 ± 0.5 | 0 | 8.8 × 1012 | 3.7 ± 0.1 | 3.8 ± 0.2 | 10.9 ± 0.3 | 1.2 ± 0.7 |
0.56 | 0.5 ± 0.1 | 0.22 ± 0.04 | 1.0 ± 0.3 | 0 | 1.3 × 1012 | 0.6 ± 0.1 | 0.7 ± 0.1 | 21.8 ± 2.1 | 22.5 ± 1.7 |
0 | 6.3 × 1012 | 2.5 ± 0.3 | 2.6 ± 0.3 | 17.1 ± 1.8 | 17.5 ± 2.3 | ||||
40 | 6.3 × 1012 | 2.2 ± 0.2 | 2.4 ± 0.3 | 15.2 ± 1.5 | 16.3 ± 2.1 | ||||
80 | 6.3 × 1012 | 2.9 ± 0.4 | 2.4 ± 0.2 | 20.0 ± 2.5 | 16.0 ± 1.3 | ||||
0 | 8.8 × 1012 | 3.3 ± 0.1 | 3.5 ± 0.2 | 16.1 ± 0.5 | 17.1 ± 1.2 | ||||
0 | 2.5 × 1013 | 8.5 ± 0.3 | 9.1 ± 0.2 | 14.3 ± 0.5 | 15.4 ± 0.4 | ||||
0 | 1.3 × 1014 | 43.8 ± 1.6 | 41.9 ± 1.0 | 14.3 ± 0.5 | 13.7 ± 0.3 | ||||
0 | 6.3 × 1014 | 109 ± 25 | 99 ± 21 | 7.4 ± 1.7 | 6.7 ± 1.4 | ||||
0 | 1.4 × 1015 | 122 ± 10 | 109 ± 9 | 3.8 ± 0.3 | 3.4 ± 0.3 | ||||
1.0 | 1.0 ± 0.2 | 0.31 ± 0.06 | 0.7 ± 0.2 | 0 | 8.8 × 1012 | 3.4 ± 0.2 | 3.5 ± 0.2 | 24.7 ± 1.3 | 25.2 ± 1.5 |
Oleic Acid Dimension | [O3] | |||
---|---|---|---|---|
Refs. | Sample Type | (Diameter or Thickness/μm) | (Molecules/cm−3) | γ × 10−4 |
[21] | suspended droplet | 0.2–0.6 | 2.5 × 1012 | 16 ± 2 |
[28] | thin film | 103 | ~1010 | 8.3 ± 0.2 |
[23] | suspended droplet | 0.6–1.0 | 2.5 × 1015 | 7.5 ± 1.2 |
[19] | thin film | ~50 | 1011–1012 | 8.0 ± 1.0 |
[25] | suspended droplet | polydisperse, submicron | 7.0 × 1013 | 13 ± 2 |
[20] | thin film | 103 | 3.0 × 1012 | 7.9 ± 0.3 |
[24] | suspended droplet | 0.6–1.2 | 2.5 × 1014–2.5 × 1015 | 13.8 ± 0.6 |
[27] | suspended droplet | 2 | 5.9 × 1014 | 3.4 ± 0.3 |
[13] | deposited droplet | 10 | 1.1 × 1013 | 34.3 ± 11.4 |
this work | deposited droplet | 0.16-2.01 | 8.8 × 1012 | (4.5 ± 0.1)–(24.7 ± 1.3) |
thin film | 0.2 | 8.8 × 1012 | 8.9 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, G.; Fu, D.; Holladay, S.; Langlois, D.; Kelley, J.; Kish, J.D.; Liu, Y. Kinetics of Heterogeneous Reaction of Ozone with Oleic Acid and Its Dependence on Droplet Size, Relative Humidity, and Ozone Concentration. Atmosphere 2025, 16, 433. https://doi.org/10.3390/atmos16040433
Zeng G, Fu D, Holladay S, Langlois D, Kelley J, Kish JD, Liu Y. Kinetics of Heterogeneous Reaction of Ozone with Oleic Acid and Its Dependence on Droplet Size, Relative Humidity, and Ozone Concentration. Atmosphere. 2025; 16(4):433. https://doi.org/10.3390/atmos16040433
Chicago/Turabian StyleZeng, Guang, Dong Fu, Sara Holladay, Danielle Langlois, Judas Kelley, J. Duncan Kish, and Yong Liu. 2025. "Kinetics of Heterogeneous Reaction of Ozone with Oleic Acid and Its Dependence on Droplet Size, Relative Humidity, and Ozone Concentration" Atmosphere 16, no. 4: 433. https://doi.org/10.3390/atmos16040433
APA StyleZeng, G., Fu, D., Holladay, S., Langlois, D., Kelley, J., Kish, J. D., & Liu, Y. (2025). Kinetics of Heterogeneous Reaction of Ozone with Oleic Acid and Its Dependence on Droplet Size, Relative Humidity, and Ozone Concentration. Atmosphere, 16(4), 433. https://doi.org/10.3390/atmos16040433