The Impact of COVID-19 on Civil Aviation Emissions: A High-Resolution Inventory Study in Eastern China’s Industrial Province
Abstract
1. Introduction
2. Methodology
2.1. Study Area and Base Years
2.2. Calculation Methods for Civil Aviation Emissions
2.2.1. Data Sources
Flight Schedule Database
Aircraft/Engine Combinations
Emission Factors of Species from Civil Aviation
2.2.2. Key Assumptions
- (1)
- The operating modes of LTO for civil aviation in Shandong are in accordance with the standard LTO cycles, as follows: 0.7 min for the take-off mode with 100% engine thrust, 2.2 min for the climb-out mode with 85% engine thrust; 4 min for the approach-landing mode with 30% engine thrust; and 26 min for the taxi/ground idle mode with 7% engine thrust. The engine thrust is set as 70% of total thrust for cruise mode [34,41], of which time consumed is calculated with the distance and cruise speed of the flight.
- (2)
- The aircraft’s operating route between two cities is assumed to be a great circle, with the starting and finishing airports as the endpoints, and aircrafts fly in a straight line between two points.
- (3)
- All flights are adequately fueled, and all civil aviation flights fly as planned.
- (4)
- The actual cruising altitudes of major aircrafts are roughly 9–13 km, and species emitted at around 11 km account for a substantial part of total emissions [42,43]. For cruise emissions, the values for domestic flights are concentrated at 8000–10,000 m, while those for international flights are predominantly at 10,000–12,000 m [18]. Take NOX emissions for example, approximately 60% of NOX the global is emitted at cruise altitude of 10–12 km [15,44]. According to above discussion, the cruise altitude is set to 11 km in this study.
- (5)
- The emissions of aircraft during CCD mode are divided according to travel demand, with the starting and finishing airports each accounting for half of the emissions during CCD mode.
- (6)
- All flights operate within the standard atmosphere.
- (7)
- The load factor of all flights is assumed to be 70%. Aircrafts are loaded with passengers’ luggage, but no other cargo.
- (8)
- Wind, as well as fluctuations in temperature and humidity throughout the day, are overlooked.
- (9)
- At the same cruise altitude and speed, the reduction in fuel flow due to the aircraft’s weight lightening from fuel consumption is not considered.
- (10)
- The emissions are simply summed up, disregarding the chemical reactions, drift, and diffusion of pollutants in the atmosphere.
2.2.3. Calculation Methods
Emission Calculations for LTO Cycles
Emission Calculations for CCD Mode
2.2.4. Revision of Emission Factors
3. Results and Discussion
3.1. Temporal Variations in Civil Aviation Emissions in Shandong: Impacts of the COVID-19 Pandemic
3.1.1. Aviation Emissions Comparison: 2018 vs. 2020
3.1.2. Aviation Emissions Comparison: 2020 vs. 2020 (Expected)
3.1.3. Monthly Emission Characteristics for Civil Aviation
3.2. Emission Characteristics of Different Civil Airports
3.2.1. Emissions from Eight Airport in 2018 and 2020
3.2.2. Emissions from Different Airlines
3.2.3. Emissions from Different Aircraft Types
3.3. Emission Characteristics of Different Operating Modes in Flying Circulation
3.4. Comparative Analysis with Other Studies
3.5. Pathways to Reducing Emissions and Enhancing Efficiency for Sustainable Aviation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China (NBS). 2024 China Statistical Yearbook. Available online: https://www.stats.gov.cn/sj/ndsj/2024/indexch.htm (accessed on 4 July 2025).
- An, H.W.; Wang, Y.; Wang, Y.X.; Liu, J.; Tang, X.L.; Yi, H.H. Civil aviation emissions in China in 2019: Characteristics and abatement potential. J. Environ. Sci. 2025, 151, 225–237. [Google Scholar] [CrossRef]
- Lu, B.B.; Dong, J.T.; Wang, C.; Sun, H.B.; Yao, H.Y. High-resolution spatio-temporal estimation of CO2 emissions from China’s civil aviation industry. Appl. Energy 2024, 373, 16–25. [Google Scholar] [CrossRef]
- Yim, S.H.L.; Lee, G.L.; Lee, I.H.; Allroggen, F.; Ashok, A.; Caiazzo, F.; Eastham, S.D.; Malina, R.; Barrett, S.R.H. Global, regional and local health impacts of civil aviation emissions. Environ. Res. Lett. 2015, 10, 034001. [Google Scholar] [CrossRef]
- Barrett, S.R.H.; Britter, R.E.; Waitz, I.A. Global mortality attributable to aircraft cruise emissions. Environ. Sci. Technol. 2010, 44, 7736–7742. [Google Scholar] [CrossRef] [PubMed]
- Woody, M.; Arunachalam, S. Secondary organic aerosol produced from aircraft emissions at the Atlanta Airport: An advanced diagnostic investigation using process analysis. Atmos. Environ. 2013, 79, 101–109. [Google Scholar] [CrossRef]
- Bajgai, D.P.; Shrestha, K.L. Evaluation of aircraft emission at Tribhuvan international airport and its contribution to air quality in Kathmandu, Nepal. Atmos. Environ.-X 2023, 17, 100204. [Google Scholar] [CrossRef]
- Eastham, S.D.; Chossière, G.P.; Speth, R.L.; Jacob, D.J.; Barrett, S.R. Global impacts of aviation on air quality evaluated at high resolution. Atmos. Chem. Phys. 2024, 24, 2687–2703. [Google Scholar] [CrossRef]
- Quadros, F.D.; Snellen, M.; Dedoussi, I.C. Regional sensitivities of air quality and human health impacts to aviation emissions. Environ. Res. Lett. 2020, 15, 105013. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. IPCC Sixth Assessment Report. Working Group 1: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 4 July 2025).
- Cui, Q.; Lei, Y.; Li, Y. Protocol to calculate aircraft emissions for international air routes in South America. Star Protoc. 2022, 4, 101952. [Google Scholar] [CrossRef]
- Han, B.; Wang, L.; Deng, Z.; Shi, Y.; Yu, J. Source emission and attribution of a large airport in Central China. Sci. Total Environ. 2022, 829, 154519. [Google Scholar] [CrossRef]
- Liu, H.J.; Tian, H.Z.; Hao, Y.; Liu, S.H.; Liu, X.Y.; Zhu, C.Y.; Wu, Y.M.; Liu, W.; Bai, X.X.; Wu, B.B. Atmospheric emission inventory of multiple pollutants from civil aviation in China: Temporal trend, spatial distribution characteristics and emission features analysis. Sci. Total Environ. 2019, 648, 871–879. [Google Scholar] [CrossRef]
- Skowron, A.; Lee, D.S.; De León, R.R.; Lim, L.L.; Owen, B. Greater fuel efficiency is potentially preferable to reducing NOx emissions for aviation’s climate impacts. Nat. Commun. 2021, 12, 564. [Google Scholar] [CrossRef]
- Arunachalam, S.; Naess, B.; Seppanen, C.; Valencia, A.; Brandmeyer, J.E.; Venkatram Weil, J.; Isakov, V.; Barzyk, T. A new bottom-up emissions estimation approach for aircraft sources in support of air quality modelling for community-scale assessments around airports. Int. J. Environ. Pollut. 2019, 65, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Nopmongcol, U.; Grant, J.; Knipping, E.; Alexander, M.; Schurhoff, R.; Young, D.; Yarwood, G. Air Quality Impacts of Elec-trifying Vehicles and Equipment Across the United States. Environ. Sci. Technol. 2017, 51, 2830–2837. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, T.N.; Shepson, P.B.; Cambaliza, M.O.; Stirm, B.H.; Karion, A.; Sweeney, C.; Lyon, D. Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin. Environ. Sci. Technol. 2015, 49, 7904–7913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.R.; Zhang, S.J.; Zhang, X.L.; Wang, J.; Wu, Y.; Hao, J.M. Developing a High-Resolution Emission Inventory of China’s Aviation Sector Using Real-World Flight Trajectory Data. Environ. Sci. Technol. 2022, 56, 5743–5752. [Google Scholar] [CrossRef]
- Teoh, R.; Engberg, Z.; Shapiro, M.; Dray, L.E.J.; Stettler, M. The high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021. Atmos. Chem. Phys. 2024, 24, 725–744. [Google Scholar] [CrossRef]
- Lang, J.L.; Yang, Z.K.; Zhou, Y.; Wen, C.Y.; Cheng, X.P. Four-dimensional aircraft emission inventory dataset of Landing and takeoff cycle in China (2019–2023). Earth Syst. Sci. Data Discuss. 2024, 17, 2489–2506. [Google Scholar] [CrossRef]
- Tokulu, A. Calculation of Aircraft Emissions During Landing and Take-Off (LTO) Cycles at Batumi International Airport, Georgia. Int. J. Environ. Geoinf. 2021, 8, 186–192. [Google Scholar] [CrossRef]
- Kurniawan, J.S.; Khardi, S. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports. Environ. Impact Asses. 2011, 31, 240–252. [Google Scholar] [CrossRef]
- Atasoy, V.E.; Suzer, A.E.; Ekici, S. Environmental impact of pollutants from commercial aircrafts at Hasan Polatkan airport. Aircr. Eng. Aerosp. Tec. 2021, 93, 417–428. [Google Scholar] [CrossRef]
- Shandong Provincial Department of Ecology and Environment (SPDEE). Shandong Province Ecological Environment Status Bulletin. 2025. Available online: http://www.sdein.gov.cn/dtxx/hbyw/202506/t20250606_4826883.html (accessed on 4 July 2025).
- Xue, D.; Du, S.; Wang, B.; Shang, W.L.; Acogadro, N.; Ochieng, W.Y. Low-carbon benefits of aircraft adopting continuous descent operations. Appl. Energy 2025, 383, 125390. [Google Scholar] [CrossRef]
- Xue, D.; Chen, X.M.; Yu, S. Sustainable aviation for a greener future. Commun. Earth Environ. 2025, 6, 233. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Liu, X.; Yu, N.; Wang, K. Aircraft emission inventory and characteristics of the airport cluster in the Guangdong–Hong Kong–Macao greater bay area, China. Atmosphere 2020, 11, 323. [Google Scholar] [CrossRef]
- Kesign, U. Aircraft emissions at Turkish airports. Energy 2006, 31, 372–384. [Google Scholar] [CrossRef]
- Çil, M.A.; Tangöz, S.; Tarhan, C. Effect of go-around events on the LTO Cycle: Emissions and fuel analysis. Air Qual. Atmos. Health 2025, 18, 2139–2149. [Google Scholar] [CrossRef]
- Airlines for America: World Airlines Traffic and Capacity. Available online: https://www.airlines.org/dataset/world-airlines-traffic-and-capacity/ (accessed on 4 July 2025).
- Civil Aviation Administration of China (CAAC). Statistical Data on Civil Aviation of China 2016; CAAC: Beijing, China, 2016.
- Fan, W.Y.; Sun, Y.F.; Zhu, T.L.; Wen, Y. Emissions of HC, CO, NOX, CO2, and SO2 from civil aviation in China in 2010. Atmos. Environ. 2012, 56, 52–57. [Google Scholar] [CrossRef]
- International Civil Aviation Organization (ICAO). ICAO Aircraft Engine Emissions Databank. Available online: https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank (accessed on 4 July 2025).
- European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023; Technical Report No 21; European Environment Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- Stettler, M.E.J.; Eastham, S.; Barrett, S.R.H. Air quality and public health impacts of UK airports. Part I: Emissions. Atmos. Environ. 2011, 45, 5415–5424. [Google Scholar] [CrossRef]
- Dopelheuer, A.; Lecht, M. Influence of engine performance on emission characteristics. In Gas Turbine Engine Combustion, Emissions and Alternative Fuels, Proceedings of the RTO/AVT Symposium: Lisboa, Portugal; Canada Communication Group Inc.: Hull, QC, Canada, 1998; pp. 12–16. [Google Scholar]
- Wayson, R.L.; Fleming, G.G.; Lovinelli, R. Methodology to estimate particulate matter emissions from certified commercial aircraft engines. J. Air Waste Manag. 2009, 59, 91–100. [Google Scholar] [CrossRef]
- Petetin, H.; Beekmann, M.; Colomb, A.; Denier van der Gon, H.A.C.; Dupont, J.C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A. Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements. Atmos. Chem. Phys. 2015, 15, 9799–9818. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, C.; Feng, Y.; Zhi, G.; Li, J.; Zhang, G. Measurements of emission factors of PM2.5, OC, EC, and BC for household stoves of coal combustion in China. Atmos. Environ. 2015, 109, 190–196. [Google Scholar] [CrossRef]
- Santoni, G.W.; Lee, B.H.; Wood, E.C.; Herndon, S.C.; Miake-Lye, R.C.; Wofsy, S.C.; McManus, J.B.; Nelson, D.D.; Zahniser, M.S. Aircraft emissions of methane and nitrous oxide during the alternative aviation fuel experiment. Environ. Sci. Technol. 2011, 45, 7075–7082. [Google Scholar] [CrossRef]
- International Civil Aviation Organization (ICAO). Annex 16, Volume II: Environmental protection—Aircraft engine emissions. In International Standards and Recommended Practices, 4th ed.; ICAO: Montréal, QC, Canada, 2017. [Google Scholar]
- Daggett, D.L.; Sutkus, D.J.; Dubois, D.P.; Baughcum, S.L. An Evaluation of Aircraft Emissions Inventory Methodology by Comparisons with Reported Airline Data. Environ. Modell. Softw. 1999, 25, 1738–1753. [Google Scholar]
- Ma, J.; Zhou, X. Development of a three-dimensional inventory of aircraft NOx emissions over China. Atmos. Environ. 2000, 34, 389–396. [Google Scholar] [CrossRef]
- Gardner, R.M.; Cook, T.D.F.; Ernedal, S.; Falk, R.; Fleuti, E.; Herms, E. The ANCAT/EC global inventory of NOX emissions from aircraft. Atmos. Environ. 1997, 31, 1751–1766. [Google Scholar] [CrossRef]
- Arter, C.A.; Arunachalam, S. Assessing the importance of nonlinearity for aircraft emissions’ impact on O3 and PM2.5. Sci. Total Environ. 2021, 777, 146121. [Google Scholar] [CrossRef]
- Kalivoda, M.T. Methodologies for Estimating Emissions from Air Traffic–Future Emissions; Meet Project; PSIA: Vienna, Austria, 1997. [Google Scholar]
- Perl, A.; Patterson, J.; Perez, M. Pricing aircraft emissions at Lyon-Satolas airport. Transp. Res. Part D Transp. Environ. 1997, 2, 89–105. [Google Scholar] [CrossRef]
- Haralambopoulos, P.S. Energy demand and environmental pressures due to the operation of Olympic Airways in Greece. Energy 1998, 23, 125–136. [Google Scholar] [CrossRef]
- Sutkus, D.J.; Baughcum, S.L.; Dubois, D.P. Scheduled Civil Aircraft Emission Inventories for 1999: Database Development and Analysis; Boeing Commercial Airplane Group: Seattle, WA, USA, 1996. [Google Scholar]
- Eaton, J.; Naraghi, M.; Boyd, J.G. Regional pathways for all-electric aircraft to reduce aviation sector greenhouse gas emissions. Appl. Energy 2024, 373, 123831. [Google Scholar] [CrossRef]
- Wasiuk, D.K.; Khan, M.A.H.; Shallcross, D.E.; Lowenberg, M.H. The impact of global aviation NOx emissions on tropospheric composition changes from 2005 to 2011. Atmos. Res. 2016, 178–179, 73–83. [Google Scholar] [CrossRef]
- Arunachalam, S.; Wang, B.; Davis, N.; Baek, B.H.; Levy, J.I. Effect of chemistry-transport model scale and resolution on population exposure to PM2. 5 from aircraft emissions during landing and takeoff. Atmos. Environ. 2011, 45, 3294–3300. [Google Scholar] [CrossRef]
- Olsen, S.C.; Wuebbles, D.J.; Owen, B. Comparison of global 3-D aviation emissions datasets. Atmos. Chem. Phys. 2013, 13, 429–441. [Google Scholar]
- Søvde, O.A.; Matthes, S.; Skowron, A.; Iachetti, D.; Lim, L.; Owen, B.; Isaksen, I.S. Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOX emission impact on O3 photochemistry. Atmos. Environ. 2014, 95, 468–479. [Google Scholar] [CrossRef]
- Leibensperger, E.M.; Mickley, L.J.; Jacob, D.J.; Barrett, S.R.H. Intercontinental influence of NOx and CO emissions on particulate matter air quality. Atmos. Environ. 2011, 45, 3318–3324. [Google Scholar] [CrossRef]
- Cassee, F.R.M.-E.H.; Gerlofs-Nijland, M.E.; Kelly, F.J. Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 2013, 25, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Office of the Leading Group (Headquarters) for Handling the Novel Coronavirus Pneumonia Epidemic Situation of the Provincial Party Committee. Announcement on Adjusting the Emergency Response Level for the Prevention and Control of COVID-19 in Shandong Province. Available online: http://www.shandong.gov.cn/art/2020/3/7/art_97902_350535.html (accessed on 4 July 2025).
- Civil Aviation Administration of China (CAAC). Statistical Bulletin on the Development of Civil Aviation Industry in 2020. Available online: http://www.caac.gov.cn/XXGK/XXGK/TJSJ/202106/P020210610582600192012.pdf (accessed on 4 July 2025).
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 2020, 10, 35–41. [Google Scholar] [CrossRef]
- Song, S.K.; Shon, Z.H. Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea. Atmos. Environ. 2012, 61, 148–158. [Google Scholar] [CrossRef]
- Iacus, S.M.; Natale, F.; Satamaria, C.; Spyratos, S.; Vespe, M. Estimating and Projecting Air Passenger Traffic during the COVID-19 Coronavirus Outbreak and its Socio-Economic Impact. Saf. Sci. 2020, 129, 104791. [Google Scholar] [CrossRef]
- Winther, M.; Kousgaard, U.; Ellermann, T.; Massling, A.; Ketzel, M. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU’s and handling equipment at Copenhagen Airport. Atmos. Environ. 2015, 100, 218–229. [Google Scholar] [CrossRef]
- Han, B.; Kong, W.K.; Yao, T.W.; Wang, Y. Air Pollutant Emission Inventory from LTO Cycles of Aircraft in the Beijing-Tianjin-Hebei Airport Group, China. Huan Jing Kexue 2020, 41, 1143–1150. [Google Scholar]
- Zhu, C.Y.; Qu, X.Y.; Qiu, M.Y.; Zhu, C.T.; Wang, C.; Wang, B.L.; Li, L.; Yan, G.H.; Xu, C.Q. High spatiotemporal resolution vehicular emission inventory in Being-Tianjin-Hebei and its surrounding areas (BTHSA) during 2000–2020, China. Sci. Total Environ. 2023, 873, 162389. [Google Scholar] [CrossRef]
- Jiang, P.Y.; Chen, X.L.; Li, Q.Y.; Mo, H.H.; Li, L.Y. High-resolution emission inventory of gaseous and particulate pollutants in Shandong Province, eastern China. J. Clean. Pro. 2020, 259, 120806. [Google Scholar] [CrossRef]
- Zhou, M.M.; Jiang, W.; Gao, W.D.; Gao, X.M.; Ma, M.C.; Ma, X. Anthropogenic emission inventory of multiple air pollutants and their spatiotemporal variations in 2017 for the Shandong Province, China. Environ. Pollut. 2021, 288, 117666. [Google Scholar] [CrossRef]
- Civil Aviation Administration of China (CAAC). Civil Aviation Airport Production Statistics Bulletin. 2024. Available online: http://www.caac.gov.cn/PHONE/XXGK_17/XXGK/TJSJ/202503/P020250314353469776556.pdf (accessed on 4 July 2025).
Airports/Emission Sources | BC/t | CO2/kt | CO/t | HC/t | NOX/t | SO2/t | OC/t | PM2.5/t | HMs/kg | Year | Data Sources |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing (ZBAA) | / | / | 2597.6 | 351.1 | 7995.2 | 306.2 | / | 38.9 | / | 2018 | [63] |
Beijing (ZBAA) | / | 690 | 2230 | 130 | 2970 | 160 | / | 10 | / | 2019 | [2] |
Beijing (ZBAA) | 15.9 | 1312.8 | 4143.9 | 338.1 | 6416.7 | 416.8 | 10.6 | 33.1 | 119.1 | 2015 | [13] |
Qingdao (ZSQD) | 2.7 | 211.1 | 749.3 | 55.1 | 775.1 | 67 | 1.8 | 5.6 | 19.2 | 2015 | [13] |
Qingdao (ZSQD) | 4.6 | 416.9 | 1017.4 | 62.5 | 1931.6 | 111.2 | 0.7 | 10.7 | 32.9 | 2018 | this study |
Tianjin (ZBTJ) | / | / | 706.5 | 91.7 | 1250.4 | 52.9 | / | 7.6 | / | 2018 | [63] |
Tianjin (ZBTJ) | 2.2 | 170.7 | 605.8 | 44.6 | 626.6 | 54.2 | 1.5 | 4.6 | 15.5 | 2015 | [13] |
Zhengzhou (ZHCC) | / | / | 577 | 56.3 | 969.4 | 268.3 | / | 26.9 | / | 2019 | [14] |
Zhengzhou (ZHCC) | 2.7 | 209.8 | 744.4 | 54.8 | 770 | 66.6 | 1.8 | 5.6 | 19 | 2015 | [13] |
Jinan (ZSJN) | 1.4 | 145.2 | 501.7 | 24.5 | 539.3 | 38.7 | 0.2 | 3.5 | 11.4 | 2018 | this study |
Activation LTO emission from Shandong | 8.5 | 827.8 | 2346.6 | 130.0 | 3458.1 | 220.9 | 1.3 | 20.5 | 65.2 | 2018 | this study |
Industrial processes | / | / | 10,749,500 | 1,599,700 | 109,800 | 25,500 | / | 547,500 | / | 2016 | [64] |
Anthropogenic emissions in Shandong | / | / | 19,618,800 | 3,257,100 | 1,430,600 | / | / | 5,136,800 | / | 2016 | [64] |
Mobile sources | 4236 | 176,971.0 | 536,121 | 111,845 | 452,702 | 974 | 17,059 | 2020 | [65] | ||
Fossil fuel combustion | / | / | 1961,400 | 57,600 | 1,622,200 | 1,015,500 | / | 237,300 | / | 2017 | [66] |
Biomass burning | / | / | 1,283,600 | 130,000 | 35,200 | 13,700 | / | 125,300 | / | 2017 | [66] |
Mobile sources | / | / | 2,297,000 | 379,900 | 773,700 | 51,700 | / | 54,100 | / | 2017 | [66] |
Anthropogenic emissions in Shandong | / | / | 9,250,700 | 2,254,700 | 2,488,600 | 1,387,800 | / | 3,193,000 | / | 2017 | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Jiang, B.; Qiu, M.; Yang, N.; Sun, L.; Wang, C.; Wang, B.; Yan, G.; Xu, C. The Impact of COVID-19 on Civil Aviation Emissions: A High-Resolution Inventory Study in Eastern China’s Industrial Province. Atmosphere 2025, 16, 994. https://doi.org/10.3390/atmos16080994
Zhu C, Jiang B, Qiu M, Yang N, Sun L, Wang C, Wang B, Yan G, Xu C. The Impact of COVID-19 on Civil Aviation Emissions: A High-Resolution Inventory Study in Eastern China’s Industrial Province. Atmosphere. 2025; 16(8):994. https://doi.org/10.3390/atmos16080994
Chicago/Turabian StyleZhu, Chuanyong, Baodong Jiang, Mengyi Qiu, Na Yang, Lei Sun, Chen Wang, Baolin Wang, Guihuan Yan, and Chongqing Xu. 2025. "The Impact of COVID-19 on Civil Aviation Emissions: A High-Resolution Inventory Study in Eastern China’s Industrial Province" Atmosphere 16, no. 8: 994. https://doi.org/10.3390/atmos16080994
APA StyleZhu, C., Jiang, B., Qiu, M., Yang, N., Sun, L., Wang, C., Wang, B., Yan, G., & Xu, C. (2025). The Impact of COVID-19 on Civil Aviation Emissions: A High-Resolution Inventory Study in Eastern China’s Industrial Province. Atmosphere, 16(8), 994. https://doi.org/10.3390/atmos16080994