Can Agrometeorological Indices of Adverse Weather Conditions Help to Improve Yield Prediction by Crop Models?
Abstract
:1. Introduction
2. Material and Methods
2.1. Locations and Data Base
Country | No. | Station Name | Latitude | Longitude | Altitude (m) | Winter Wheat | Maize |
---|---|---|---|---|---|---|---|
Time Period | |||||||
Austria | 1 | Gross-Enzersdorf | 48°12′N | 16°34′E | 153 | 1991–2009 | - |
Croatia | 2 | Zagreb-Maksimir | 45°49′N | 16°2′E | 128 | - | 1991–2005 |
Serbia | 3 | RimskiSancevi | 45°15′N | 19°50′E | 84 | 1981–2004 | - |
Slovakia | 4 | Ziharec | 48°04′N | 17°53′E | 112 | 1991–2007 | 1991–2007 |
5 | Podhajska | 48°06′N | 18°20′E | 140 | 1991–2007 | 1991–2007 | |
6 | Belusa | 49°04′N | 18°19′E | 254 | 1991–2007 | - | |
Sweden | 7 | Lund/Borgeby | 55°44′N | 13°04′E | <10 | 1980–1998 | - |
2003–2009 | |||||||
8 | Uppsala/Ultuna | 59°49′N | 17°40′E | <10 | 1961–2000 | - | |
2002–2008 |
2.2. Characteristics of Locations and Data Base
Country | Station Name | Ta (°C) | Ha (mm) | TA-S (°C) | HA-S (mm) |
---|---|---|---|---|---|
Austria | Gross-Enzersdorf | 9.8 | 520 | 16.2 | 321 |
Croatia | Zagreb | 10.7 | 840 | 17.0 | 483 |
Serbia | RimskiSancevi | 11.4 | 578 | 17.9 | 360 |
Slovakia | Ziharec | 9.8 | 557 | 16.5 | 321 |
Podhajska | 9.8 | 527 | 16.6 | 311 | |
Belusa | 8.8 | 707 | 15.0 | 422 | |
Sweden | Lund/Borgeby | 8.1 | 687 | 13.4 | 336 |
Uppsala/Ultuna | 5.6 | 575 | 11.9 | 325 |
2.3. Agrometeorological Indices (AMI)
- arctic day—day with minimum daily temperature below −20 °C;
- freeze day (FreezD)—day with maximum daily temperature below 0 °C;
- frost day (FrostD)—day with minimum daily temperature below 0 °C;
- summer day (SumD)—day with maximum daily temperature above 25 °C;
- tropical day (TropD)—day with maximum daily temperature above 30 °C.
- dry start (Dstart)—actual/reference evapotranspiration < 0.5;
- dry intensive (Dintensive)—actual/reference evapotranspiration < 0.4;
- dry extreme (Dextreme)—actual/reference evapotranspiration < 0.3;
- dry very extreme (Dvextreme)—actual/reference evapotranspiration < 0.2.
Locations | January | February | March | April | May | June | July | August | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FrostD | FreezD | FrostD | FreezD | FrostD | SumD | FrostD | TropD | SumD | TropD | SumD | TropD | SumD | TropD | SumD | |
Gross-Enzersdorf | 19.9 | 9.6 | 15.3 | 3.4 | 9.4 | 0.9 | 1.9 | 0.4 | 7.5 | 3.4 | 14.6 | 7.9 | 21.1 | 6.8 | 20.2 |
Zagreb | 20.9 | 5.8 | 17.0 | 2.0 | 8.1 | 0.7 | 1.2 | 1.6 | 10.8 | 6.7 | 18.3 | 10.3 | 23.7 | 8.9 | 23.4 |
RimskiSancevi | 22.2 | 8.5 | 18.4 | 4.9 | 10.3 | 2.0 | 1.8 | 1.0 | 10.8 | 5.1 | 16.7 | 10.2 | 23.4 | 11.0 | 24.6 |
Ziharec | 21.6 | 8.1 | 19.2 | 2.3 | 14.2 | 1.9 | 3.6 | 2.1 | 10.9 | 5.0 | 17.4 | 10.2 | 22.9 | 10.8 | 23.2 |
Podhajska | 23.0 | 10.3 | 19.6 | 3.5 | 13.9 | 1.9 | 3.6 | 1.9 | 10.8 | 5.5 | 16.5 | 10.9 | 22.3 | 9.3 | 22.1 |
Belusa | 23.6 | 9.9 | 20.8 | 3.9 | 16.6 | 1.9 | 5.1 | 0.7 | 8.1 | 3.4 | 13.6 | 7.1 | 18.9 | 6.6 | 20.2 |
Lund | 13.2 | 8.2 | 16.0 | 8.5 | 10.2 | 0.2 | 2.7 | 0.0 | 0.4 | 0.1 | 1.8 | 0.2 | 3.4 | 0.2 | 3.4 |
Uppsala | 24.6 | 13.9 | 23.1 | 12.5 | 22.5 | 0.0 | 15.5 | 0.0 | 1.1 | 0.1 | 4.5 | 0.5 | 6.8 | 0.5 | 4.4 |
Locations | Dstart | Dintensive | Dextreme | Dvextreme | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMJ | JJA | MAM | AMJ | JJA | MAM | AMJ | JJA | MAM | AMJ | JJA | |
Gross-Enzersdorf | 47.4 | 59.8 | 58.5 | 29.9 | 44.1 | 38.3 | 16.2 | 26.5 | 25.8 | 6.5 | 10.7 |
RimskiSancevi | 41.2 | 59.2 | 49.8 | 26.5 | 45.6 | 35.8 | 12.9 | 28.3 | 22.7 | 4.4 | 15.2 |
Ziharec | 75.3 | 73.3 | 82.6 | 62.6 | 63.5 | 71.7 | 42.1 | 45.1 | 53.4 | 16.6 | 24.6 |
Podhajska | 72.3 | 75.1 | 76.1 | 59.9 | 62.2 | 64.9 | 34.9 | 45.1 | 37.0 | 14.8 | 27.2 |
Belusa | 36.5 | 35.6 | 42.0 | 23.4 | 19.8 | 30.1 | 15.6 | 10.2 | 22.3 | 6.1 | 2.7 |
Lund | 46.7 | 36.5 | 50.2 | 33.2 | 23.5 | 35.3 | 20.8 | 8.6 | 23.1 | 9.3 | 3.1 |
Uppsala | 52.0 | 34.9 | 49.3 | - | 36.5 | 10.0 | 33.6 | - | 7.5 | 3.7 | 27.2 |
2.4. Crop Yield Simulations
Soil Depth (cm) | Texture | Bulk Density (g/cm³) | Organic Carbon (%) | Wilting Point (% vol.) | Field Capacity (% vol.) | ||
---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | |||||
soil type 1 (AWC*: 52 mm) | |||||||
0–20 | 11.3 | 28.4 | 60.3 | 1.32 | 1.90 | 8.3 | 26.3 |
20–40 | 11.3 | 28.4 | 60.3 | 1.94 | 0.80 | 3.1 | 6.5 |
40–100 | 11.3 | 28.4 | 60.3 | 2.05 | 0.25 | 1.4 | 3.0 |
soil type 2 (AWC*: 112 mm) | |||||||
0–20 | 15.6 | 34.2 | 50.2 | 1.29 | 1.70 | 13.3 | 31.4 |
20–40 | 16.4 | 34.4 | 49.2 | 1.43 | 1.78 | 14.8 | 32.8 |
40–100 | 14.8 | 32.7 | 52.5 | 1.81 | 0.50 | 8.3 | 14.9 |
soil type 3 (AWC*: 184 mm) | |||||||
0–20 | 19.7 | 48.2 | 32.1 | 1.27 | 2.25 | 19.3 | 39.2 |
20–40 | 20.8 | 49.6 | 29.6 | 1.39 | 2.29 | 20.3 | 40.4 |
40–100 | 18.2 | 48.3 | 33.5 | 1.60 | 1.05 | 20.6 | 37.9 |
soil type 4 (AWC*: 225 mm) | |||||||
0–20 | 16.5 | 60.4 | 23.1 | 1.24 | 2.00 | 18.1 | 40.0 |
20–40 | 16.9 | 61.8 | 21.3 | 1.35 | 1.78 | 17.9 | 40.6 |
40–100 | 14.5 | 64.4 | 21.1 | 1.48 | 0.65 | 15.8 | 38.5 |
3. Results
3.1. Adverse Weather Conditions (AWCs) and Observed Yield
- (a)
- For AMI describing the effect of the number of days with extreme temperatures on observed yield, it is possible to distinguish between significant impact (a high correlation coefficient) and no impact (a low correlation coefficient) in 23 of 30 cases (all combinations of stations and AMI) with MZ and in 43 of 63 cases with WW (Table 6 and Table 7).
- (b)
- (c)
- In the case of MZ, for the majority of the indices it was possible to identify either high (20% for high temperatures and 32% for drought) or low correlations (57% for high temperatures and 55% for drought). Otherwise, this percentage was generally lower for WW, but the information obtained is more precise because the percentage of low correlations was 65% for high temperatures and 55% for drought, whereas high correlations could be identified for only 3% of the indices for high temperatures and 6% for drought.
- (d)
- A high correlation between the duration of cold periods (number of arctic days: −0.74, −0.50) and WW yield could only be identified for Sweden.
- (e)
- The effect of dry period duration and intensity on MZ yield was much more pronounced than the effect of high temperatures.
Location | April | May | June | July | August | |||||
---|---|---|---|---|---|---|---|---|---|---|
SumD | FrostD | TropD | SumD | TropD | SumD | TropD | SumD | TropD | SumD | |
DubrovčakLijevi | 0.03 | −0.43 | −0.31 | −0.34 | −0.07 | −0.37 | 0.15 | −0.05 | −0.64 | −0.42 |
(0.93) | (0.18) | (0.35) | (0.30) | (0.83) | (0.26) | (0.65) | (0.88) | (0.03) | (0.19) | |
Ziharec | 0.09 | 0.24 | 0.51 | 0.38 | −0.01 | −0.01 | −0.58 | −0.72 | −0.25 | −0.25 |
(0.79) | (0.47) | (0.10) | (0.24) | (0.97) | (0.97) | (0.06) | (0.01) | (0.45) | (0.45) | |
Podhajska | −0.47 | 0.08 | 0.00 | −0.20 | −0.19 | −0.11 | 0.08 | 0.06 | −0.56 | −0.56 |
(0.14) | (0.81) | (1.00) | (0.55) | (0.57) | (0.74) | (0.81) | (0.86) | (0.07) | (0.07) |
Location | January | February | March | April | May | June | |||
---|---|---|---|---|---|---|---|---|---|
FrostD | FreezD | FrostD | FreezD | FrostD | FrostD | SumD | TropD | SumD | |
Gross-Enz. | −0.14 | −0.14 | −0.43 | −0.43 | −0.27 | 0.14 | −0.32 | 0.04 | −0.24 |
(0.59) | (0.59) | (0.08) | (0.08) | (0.29) | (0.59) | (0.21) | (0.87) | (0.35) | |
RimskiSancevi | −0.27 | −0.10 | −0.42 | −0.44 | −0.03 | −0.22 | −0.02 | −0.24 | −0.30 |
(0.20) | (0.64) | (0.04) | (0.03) | (0.88) | (0.30) | (0.92) | (0.25) | (0.15) | |
Ziharec | −0.37 | −0.44 | −0.12 | −0.34 | −0.33 | −0.06 | −0.22 | −0.33 | 0.07 |
(0.21) | (0.13) | (0.69) | (0.25) | (0.27) | (0.84) | (0.47) | (0.27) | (0.82) | |
Podhajska | −0.23 | −0.32 | −0.15 | 0.08 | −0.02 | −0.23 | −0.64 | −0.58 | −0.29 |
(0.40) | (0.24) | (0.59) | (0.77) | (0.94) | (0.40) | (0.01) | (0.02) | (0.28) | |
Belusa | 0.11 | −0.23 | −0.30 | −0.28 | −0.21 | −0.03 | −0.20 | −0.32 | −0.17 |
(0.68) | (0.39) | (0.25) | (0.29) | (0.43) | (0.91) | (0.45) | (0.22) | (0.52) | |
Lund | −0.40 | −0.44 | −0.24 | −0.31 | −0.15 | 0.10 | 0.21 | - | 0.29 |
(0.17) | (0.13) | (0.42) | (0.30) | (0.62) | (0.74) | (0.49) | (0.33) | ||
Uppsala | −0.26 | −0.36 | −0.03 | −0.32 | −0.39 | −0.05 | 0.29 | - | −0.15 |
(0.19) | (0.07) | (0.88) | (0.11) | (0.04) | (0.80) | (0.15) | (0.46) |
Location | Dstart | Dintensive | Dextreme | Dvextreme | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMJ | JJA | MAM | AMJ | JJA | MAM | AMJ | JJA | MAM | AMJ | JJA | |
Ziharec | 0.59 | 0.10 | 0.65 | 0.59 | 0.13 | 0.52 | 0.50 | 0.08 | 0.08 | 0.63 | −0.12 |
(0.05) | (0.76) | (0.03) | (0.05) | (0.70) | (0.10) | (0.11) | (0.81) | (0.81) | (0.03) | (0.72) | |
Podhajska | 0.19 | −0.42 | 0.26 | 0.23 | −0.51 | 0.49 | 0.10 | −0.32 | 0.40 | 0.12 | −0.15 |
(0.57) | (0.19) | (0.44) | (0.49) | (0.10) | (0.12) | (0.76) | (0.33) | (0.22) | (0.72) | (0.65) |
Location | Dstart | Dintensive | Dextreme | Dvextreme | |||
---|---|---|---|---|---|---|---|
AMJ | MAM | AMJ | MAM | AMJ | MAM | AMJ | |
Gross-Enz. | −0.49 | −0.41 | −0.52 | −0.16 | −0.39 | 0.10 | −0.16 |
(0.04) | (0.10) | (0.03) | (0.53) | (0.12) | (0.70) | (0.53) | |
RimskiSancevi | −0.22 | −0.13 | −0.32 | −0.41 | −0.30 | −0.48 | −0.34 |
(0.30) | (0.54) | (0.12) | (0.04) | (0.15) | (0.01) | (0.10) | |
Ziharec | −0.37 | −0.26 | −0.31 | −0.28 | −0.43 | −0.61 | −0.39 |
(0.213) | (0.39) | (0.30) | (0.35) | (0.14) | (0.02) | (0.18) | |
Podhajska | −0.34 | −0.38 | −0.31 | −0.17 | −0.51 | −0.42 | −0.41 |
(0.21) | (0.16) | (0.26) | (0.54) | (0.05) | (0.11) | (0.12) | |
Belusa | −0.24 | 0.00 | −0.38 | −0.27 | −0.27 | −0.18 | −0.15 |
(0.37) | (1.00) | (0.14) | (0.31) | (0.31) | (0.50) | (0.57) | |
Lund | 0.34 | 0.16 | 0.15 | 0.02 | 0.09 | 0.19 | 0.32 |
(0.25) | (0.60) | (0.62) | (0.94) | (0.77) | (0.53) | (0.28) | |
Uppsala | −0.07 | 0.03 | −0.16 | 0.01 | −0.11 | 0.28 | 0.23 |
(0.73) | (0.88) | (0.43) | (0.96) | (0.59) | (0.16) | (0.25) |
3.2. Adverse Weather Conditions (AWCs) and Simulated Yield
Location | April | May | June | July | August | |||||
---|---|---|---|---|---|---|---|---|---|---|
SumD | FrostD | TropD | SumD | TropD | SumD | TropD | SumD | TropD | SumD | |
DubrovčakLijevi | 0.25 | - | 0.47 | 0.61 | 0.45 | 0.31 | 0.39 | −0.13 | 0.10 | −0.06 |
(0.45) | - | (0.14) | (0.04) | (0.16) | (0.35) | (0.23) | (0.70) | (0.76) | (0.86) | |
Ziharec | 0.28 | −0.45 | −0.19 | −0.02 | 0.10 | 0.32 | 0.21 | −0.10 | 0.04 | 0.16 |
(0.40) | (0.16) | (0.57) | (0.95) | (0.76) | (0.33) | (0.53) | (0.76) | (0.90) | (0.63) | |
Podhajska | −0.17 | 0.30 | −0.52 | −0.67 | −0.55 | −0.60 | 0.21 | 0.56 | 0.27 | 0.15 |
(0.61) | (0.37) | (0.10) | (0.02) | (0.07) | (0.05) | (0.53) | (0.07) | (0.42) | (0.65) |
Location | January | February | March | April | May | June | |||
---|---|---|---|---|---|---|---|---|---|
FrostD | FreezD | FrostD | FreezD | FrostD | FrostD | SumD | TropD | SumD | |
Gross-Enz. | −0.18 | −0.18 | 0.02 | 0.02 | 0.19 | −0.12 | −0.07 | −0.33 | 00.14 |
(0.48) | (0.48) | (0.93) | (0.93) | (0.46) | (0.64) | (0.78) | (0.19) | (0.59) | |
RimskiSancevi | −0.13 | −0.23 | −0.16 | −0.21 | −0.04 | 0.30 | 0.24 | 0.22 | 0.34 |
(0.54) | (0.27) | (0.45) | (0.32) | (0.85) | (0.15) | (0.25) | (0.30) | (0.10) | |
Ziharec | 0.26 | 0.17 | 0.33 | −0.02 | 0.17 | 0.36 | 0.06 | −0.15 | 0.35 |
(0.39) | (0.57) | (0.27) | (0.94) | (0.57) | (0.22) | (0.84) | (0.62) | (0.24) | |
Podhajska | 0.24 | 0.24 | 0.41 | 0.38 | 0.48 | 0.48 | 0.21 | −0.37 | −0.19 |
(0.38) | (0.38) | (0.12) | (0.16) | (0.07) | (0.07) | (0.45) | (0.17) | (0.49) | |
Belusa | 0.24 | 0.00 | 0.25 | −0.01 | 0.06 | −0.05 | −0.16 | −0.36 | −0.21 |
(0.37) | (1.00) | (0.35) | (0.97) | (0.82) | (0.85) | (0.55) | (0.17) | (0.43) | |
Lund | 0.64 | 0.77 | 0.37 | 0.58 | 0.51 | 0.16 | –0.16 | –0.16 | –0.06 |
(0.02) | (0.002) | (0.21) | (0.03) | (0.07) | (0.60) | (0.60) | (0.60) | (0.84) | |
Uppsala | −0.12 | −0.14 | −0.28 | −0.14 | −0.08 | 0.14 | −0.25 | - | −0.10 |
(0.55) | (0.49) | (0.16) | (0.49) | (0.69) | (0.49) | (0.21) | - | (0.62) |
- (a)
- For the AMI describing number of days with extreme temperatures, for MZ in 23 of 30 cases and for WW in 50 of 63 cases (Table 10 and Table 11) it is possible to identify an effect on RDSY. In six cases for MZ and four for WW, the effect was high, whereas in 17 cases for MZ and 46 for WW the effect was low.
- (b)
Location | Dstart | Dintensive | Dextreme | Dvextreme | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMJ | JJA | MAM | AMJ | JJA | MAM | AMJ | JJA | MAM | AMJ | JJA | |
Ziharec | −0.05 | 0.14 | −0.25 | −0.37 | 0.04 | −0.10 | −0.33 | −0.03 | −0.41 | −0.49 | −0.27 |
(0.88) | (0.68) | (0.45) | (0.26) | (0.90) | (0.76) | (0.32) | (0.93) | (0.21) | (0.12) | (0.42) | |
Podhajska | −0.62 | −0.27 | −0.72 | −0.77 | −0.29 | −0.72 | −0.79 | −0.32 | −0.48 | −0.56 | −0.18 |
(0.04) | (0.42) | (0.01) | (0.005) | (0.38) | (0.01) | (0.003) | (0.33) | (0.13) | (0.07) | (0.59) |
Location | Dstart | Dintensive | Dextreme | Dvextreme | |||
---|---|---|---|---|---|---|---|
AMJ | MAM | AMJ | MAM | AMJ | MAM | AMJ | |
Gross-Enz. | −0.09 | −0.27 | −0.25 | −0.46 | −0.29 | −0.36 | −0.33 |
(0.73) | (0.29) | (0.33) | (0.06) | (0.25) | (0.15) | (0.19) | |
RimskiSancevi | 0.25 | 0.10 | 0.20 | 0.05 | 0.21 | 0.06 | 0.09 |
(0.23) | (0.64) | (0.34) | (0.81) | (0.32) | (0.78) | (0.67) | |
Ziharec | 0.05 | 0.13 | 0.09 | 0.40 | –0.10 | –0.23 | 0.02 |
(0.87) | (0.67) | (0.77) | (0.17) | (0.74) | (0.44) | (0.94) | |
Podhajska | −0.13 | −0.41 | −0.28 | −0.38 | −0.38 | −0.28 | −0.24 |
(0.64) | (0.12) | (0.31) | (0.16) | (0.16) | (0.31) | (0.38) | |
Belusa | −0.03 | −0.03 | 0.08 | 0.00 | 0.02 | −0.31 | −0.20 |
(0.91) | (0.91) | (0.76) | (1.00) | (0.94) | (0.24) | (0.45) | |
Lund | −0.28 | −0.29 | −0.18 | −0.17 | 0.01 | −0.15 | −0.02 |
(0.35) | (0.33) | (0.55) | (0.57) | (0.97) | (0.62) | (0.94) | |
Uppsala | 0.09 | −0.27 | - | 0.06 | 0.05 | −0.38 | - |
(0.66) | (0.18) | - | (0.77) | (0.80) | (0.05) | - |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Coumou, D. Increase of Extreme Events in a Warming World. Available online: http://www.pnas.org/content/108/44/17905.short (accessed on 27 September 2011).
- Chunlei, L.; Richard, P.A. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 2013, 8, 1–18. [Google Scholar]
- Huntingford, C.; Jones, P.D.; Livina, V.N.; Lenton, T.M.; Cox, P.M. No increase in global temperature variability despite changing regional patterns. Nature 2013, 500, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Eitzinger, J.; Štastná, M.; Žalud, Z.; Dubrovský, M. A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agr. Water Manag. 2003, 61, 195–217. [Google Scholar] [CrossRef]
- Slingo, J.M.; Challinor, A.J.; Hoskins, B.J.; Wheeler, T.R. Introduction: Food crops in a changing climate. Philos. T. R. Soc. B. 2005, 360, 1983–1989. [Google Scholar] [CrossRef]
- Nicholls, N.; Alexander, L. Has the climate become more variable or extreme? Progress 1992–2006. Prog. Phys. Geog. 2007, 31, 77–87. [Google Scholar] [CrossRef]
- Alcamo, J.; Moreno, J.M.; Nováky, B.; Bindi, M.; Corobov, R.; Devoy, R.J.N.; Giannakopoulos, C.; Martin, E.; Olesen, J.E.; Shvidenko, A. Europe. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 541–580. [Google Scholar]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Change Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.B.; Tignor, M.M.B.; Miller, H.L.; Chen, Z. Climate change 2007: The physical science basis. In IPCC 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2007. [Google Scholar]
- Semenov, M.A. Development of high resolution UKCIP02-based climate change scenarios in the UK. Agr. Forest Meteorol. 2007, 144, 127–138. [Google Scholar] [CrossRef]
- Semenov, M.A. Impacts of climate change on wheat in England and Wales. J. R. Soc. Interface 2009, 6, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Semenov, M.A.; Porter, J.R. Climatic variability and the modelling of crop yields. Agr. Forest Meteorol. 1995, 73, 265–283. [Google Scholar] [CrossRef]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. B. 2005, 360, 2021–2035. [Google Scholar] [CrossRef]
- Ruiz-Ramos, M.; Sánchez, E.; Gallardo, C.; Mínguez, M.I. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 2011, 11, 3275–3291. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Mearns, L.O.; Rosenzweig, C.; Goldberg, R. Effect of changes in interannual climatic variability on CERES-wheat yields: Sensitivity and 2×CO2 general circulation model studies. Agr. Forest Meteorol. 1992, 62, 159–189. [Google Scholar] [CrossRef]
- Southworth, J.; Randolph, J.C.; Habeck, M.; Doering, O.C.; Pfeifer, R.A.; Rao, D.G.; Johnston, J.J. Consequences of future climate change and changing climate variability on MZ yields in the Midwestern United States. Agr. Ecosyst. Environ. 2000, 82, 139–158. [Google Scholar] [CrossRef]
- Jones, P.D.; Lister, D.H.; Jaggard, K.W.; Pidgeon, J.D. Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim. Change 2003, 58, 93–108. [Google Scholar] [CrossRef]
- Easterling, W.E.; Aggarwal, P.K.; Batima, P.; Brander, K.M.; Erda, L.; Howden, S.M.; Kirilenko, A.; Morton, J.; Soussana, J.F.; Schmidhuber, J.; et al. Food, fibre and forest products. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 273–313. [Google Scholar]
- Lobell, D.B.; Field, C.B. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 1–7. [Google Scholar] [CrossRef]
- Lavalle, C.; Micale, F.; Houston, T.D.; Camia, A.; Hiederer, R.; Lazar, C.; Conte, C.; Amatulli, G.; Genovese, G. Climate change in Europe. 3. Impact on agriculture and forestry. A review. Agron. Sustain. Dev. 2009, 29, 433–446. [Google Scholar] [CrossRef]
- Quiroga, S.; Iglesias, A. A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain. Agr. Syst. 2009, 101, 91–100. [Google Scholar] [CrossRef]
- Iglesias, A.; Quiroga, S.; Schlickenrieder, J. Assessing uncertainty to support climate change adaptation needs for Mediterranean crops. Clim. Res. 2010, 44, 83–94. [Google Scholar] [CrossRef]
- Kristensen, K.; Schelde, K.; Olesen, J.E. Winter wheat yield response to climate variability in Denmark. J. Agr. Sci. 2011, 149, 33–47. [Google Scholar] [CrossRef]
- Moriondo, M.; Giannakopoulos, C.; Bindiet, M. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Change 2011, 104, 679–701. [Google Scholar] [CrossRef]
- Lalic, B.; Mihailovic, D.T.; Eitzinger, J.; Jacimovic, G.; Zivanovic, O. Assessment of Possible Relation between Trends in Agroclimatic Indices and Crop Model Outputs. Available online: http://www.boku.ac.at/met/report/BOKU-Met_Report_17_online.pdf. (accessed on 26 September 2013).
- Lalic, B.; Eitzinger, J.; Mihailovic, D.T.; Thaler, S.; Jancic, M. Climate change impacts on winter wheat yield change—Which climatic parameters are crucial in Pannonian lowland? J. Agr. Sci. 2013, 151, 757–774. [Google Scholar] [CrossRef]
- Eitzinger, J.; Trnka, M.; Semerádová, D.; Thaler, S.; Svobodová, E.; Hlavinka, P.; Siska, B.; Takáč, J.; Malatinská, L.; Nováková, M.; et al. Regional climate change impacts on agricultural crop production in Central and Eastern Europe—Hotspots, regional differences and common trends. J. Agr. Sci. 2013, 151, 787–812. [Google Scholar] [CrossRef]
- Gibson, L.R.; Paulsen, G.M. Yield components of wheat grown under high temperature stress during reproductive growth. Agron. J. 2003, 95, 266–274. [Google Scholar] [CrossRef]
- Wardlaw, I.F.; Blumenthal, C.; Larroque, O.; Wrigley, C.W. Contrasting effects of chronic heat stress and heat shock on kernel weight and flour quality in wheat. Funct. Plant Biol. 2002, 29, 25–34. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Cuellar, J.A. Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Sci. 1981, 21, 95–101. [Google Scholar] [CrossRef]
- Asseng, S.; Jamieson, P.D.; Kimball, B.; Pinter, P.; Sayre, K.; Bowden, J.W.; Howden, S.M. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crop Res. 2004, 85, 85–102. [Google Scholar] [CrossRef]
- Munasinghe, M. Natural disasters and sustainable development: Linkages and policy options. In International Decade for Natural Disaster Reduction (IDNDR) Press Kit; United Nations Office for the Coordination of Humanitarian Affairs (OCHA): New York, NY, USA, 1998. [Google Scholar]
- Sivakumar, M.V.K. Impacts of natural disasters in agriculture, rangelands, and forestry: An overview. In Natural Disasters and Extreme Events in Agriculture; Springer-Verlag: Heidelberg, Germany, 2005; pp. 1–22. [Google Scholar]
- Sivakumar, M.V.K. Climate prediction and agriculture: current status and future challenges. Clim. Res. 2006, 33, 3–17. [Google Scholar] [CrossRef]
- Orlandini, S.; Nejedlik, P.; Eitzinger, J.; Alexandrov, V.; Toullios, L.; Calanca, P.; Trnka, M.; Olesen, J.E. Impacts of climate change and variability on European agriculture: Results of inventory analysis in COST 734 countries. Ann. N. Y. Acad. Sci. 2008, 1146, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S.; et al. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agr. Forest Meteorol. 2013, 170, 166–182. [Google Scholar]
- Hoogenboom, G. Contribution of agrometeorology to the simulation of crop production and its applications. Agr. Forest Meteorol. 2000, 103, 137–157. [Google Scholar] [CrossRef]
- Eitzinger, J.; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rötter, R.; Kersebaum, K.C.; et al. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. J. Agr. Sci. 2013, 151, 813–835. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 2013, 3, 827–832. [Google Scholar]
- Challinor, A.J.; Wheeler, T.R.; Hemming, D.; Upadhyaya, H.D. Ensemble yield simulations: Crop and climate uncertainties, sensitivity to temperature and genotypic adaptation to climate change. Clim. Res. 2009, 38, 117–127. [Google Scholar] [CrossRef]
- Eitzinger, J.; Thaler, S.; Orlandini, S.; Nejedlik, P.; Kazandjiev, V.; Sivertsen, T.H.; Mihailovic, D. Applications of agroclimatic indices and process oriented crop simulation models in European agriculture. Időjárás 2009, 113, 1–12. [Google Scholar]
- Büntgen, U.; Kyncl, T.; Ginzler, C.; Jacks, D.S.; Esper, J.; Tegel, W.; Heussner, K.U.; Kyncl, J. Filling the Eastern European Gap in Millennium-Long Temperature Reconstructions. Available online: http://www.pnas.org/content/110/5/1773.full.pdf (accessed on 29 January 2013).
- Müller, W. Agroklimatische Kennzeichnung des zentralen Marchfelds; Kliinatologie: Landwirtschaft, Flandern, 1993. [Google Scholar]
- Thaler, S.; Eitzinger, J.; Trnka, M.; Dubrovsky, M. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. J. Agr. Sci. 2012, 150, 537–555. [Google Scholar] [CrossRef]
- Zaninović, K.; Gajić-Čapka, M.; Perčec, T.M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Climate Atlas of Croatia, 1961–1990 and 1971–2000. Available online: http://bib.irb.hr/lista-radova?sif_znan=1.03&period=2007 (accessed on 11 September 2014).
- World Meteorological Organization. Guide to Hydrological Practices, 5th ed.; World Meteorological Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Swedish Meteorological and Hydrological Institute. Available online: http://www.smhi.se/kunskapsbanken/klimat/vegetationsperiod-1.6270 (accessed on 11 September 2014).
- Ultuna Climate Station (SLU). Available online: http://grodden.evp.slu.se/slu_klimat/ (accessed on 11 September 2014).
- Nyström, S. Skördeutveckling i Några Långvariga Växtföljdsförsök (Yield development in Some Long-Term Rotations Experiments); Lantbrukshögskolan: Uppsala, Sewden, 1974. [Google Scholar]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvag, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rotter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Change Biol. 2011, 7, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Tssuji, G.; Hoogenboom, G.; Thornton, P.K. Understanding Options for Agricultural Production; Kluwer Academic Publishers: Dordrecht, Netherlands, 1998. [Google Scholar]
- Hunt, L.A.; Tsuji, G.Y. Decision Support System for Agrotechnology Transfer, 4th ed.; University of Hawaii: Honolulu, HI, USA, 2003. [Google Scholar]
- Soja, G.; Eitzinger, J.; Schneider, W.; Soja, A.M. Auswirkungen meteorologischer extreme auf die pflanzenproduktion in Österreich. In Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften, “Wasser und Pflanzenbau—Herausforderungen für zukünftige Produktionssysteme”; Verlag Günter Heimbach: Stuttgart, Germany, 2005; pp. 229–230. [Google Scholar]
- Eckersten, H.; Kornher, A.; Bergkvist, G.; Forkman, J.; Sindhoj, E.; Torssell, B.; Nyman, P. Crop yield trends in relation to temperature indices and a growth model. Climate Res. 2010, 42, 119–131. [Google Scholar] [CrossRef]
- Wiik, L.; Ewaldz, T. Impact of temperature and precipitation on yield and plant diseases of winter wheat in Southern Sweden 1983–2007. Crop prot. 2009, 28, 952–962. [Google Scholar] [CrossRef]
- Olesen, J.E.; Jensen, T.; Petersen, J. Sensitivity of field scale winter wheat production in Denmark to climate variability and climate change. Clim. Res. 2000, 15, 221–238. [Google Scholar] [CrossRef]
- Hollins, P.D.; Kettlewell, P.S.; Peltonen-Sainio, P.; Atkinson, M.D. Relationships between climate and winter cereal grain quality in Finland and their potential for forecasting. Agr. Food Sci. 2004, 13, 295–308. [Google Scholar] [CrossRef]
- Bergjord, A.K.; Bonesmo, H.; Skjelvåg, A.O. Modelling the course of frost tolerance in winter wheat. I. Model development. Eur. J. Agron. 2008, 28, 321–330. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lalić, B.; Eitzinger, J.; Thaler, S.; Vučetić, V.; Nejedlik, P.; Eckersten, H.; Jaćimović, G.; Nikolić-Djorić, E. Can Agrometeorological Indices of Adverse Weather Conditions Help to Improve Yield Prediction by Crop Models? Atmosphere 2014, 5, 1020-1041. https://doi.org/10.3390/atmos5041020
Lalić B, Eitzinger J, Thaler S, Vučetić V, Nejedlik P, Eckersten H, Jaćimović G, Nikolić-Djorić E. Can Agrometeorological Indices of Adverse Weather Conditions Help to Improve Yield Prediction by Crop Models? Atmosphere. 2014; 5(4):1020-1041. https://doi.org/10.3390/atmos5041020
Chicago/Turabian StyleLalić, Branislava, Josef Eitzinger, Sabina Thaler, Višnjica Vučetić, Pavol Nejedlik, Henrik Eckersten, Goran Jaćimović, and Emilija Nikolić-Djorić. 2014. "Can Agrometeorological Indices of Adverse Weather Conditions Help to Improve Yield Prediction by Crop Models?" Atmosphere 5, no. 4: 1020-1041. https://doi.org/10.3390/atmos5041020
APA StyleLalić, B., Eitzinger, J., Thaler, S., Vučetić, V., Nejedlik, P., Eckersten, H., Jaćimović, G., & Nikolić-Djorić, E. (2014). Can Agrometeorological Indices of Adverse Weather Conditions Help to Improve Yield Prediction by Crop Models? Atmosphere, 5(4), 1020-1041. https://doi.org/10.3390/atmos5041020