A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Data
2.2. Clustering Approach Based on Multi-Temporal Xco2 Data
2.3. Optimal Number of Clusters
3. Results and Discussion
3.1. Xco2 and Anthropogenic Emissions
3.2. Xco2 and NPP
3.3. Attribution of Xco2 Clusters
Cluster | Contrast of Xco2 ppm | Xco2 Amplitude ppm | Ramp_n Xco2 Amplitude vs. NPP | Strength of Emission | Strength of NPP | Fraction of Land Cover* L:F:N | Types |
---|---|---|---|---|---|---|---|
1 | 1.5 | 9.3 | - | 1.00 | 0.79 | 70:22:4 | E |
2 | 1.2 | 7.8 | −0.27 | 0.76 | 1.00 | 68:27:2 | E |
3 | 1.1 | 5.4 | 0.19 | 0.03 | 0.15 | 38:1:60 | Δ |
4 | 0.4 | 10.7 | 0.71 | 0.45 | 0.81 | 58:38:1 | - |
5 | 0.2 | 6.1 | 0.53 | 0.05 | 0.22 | 38:2:59 | - |
6 | 0.0 | 7.9 | - | 0.13 | 0.61 | 69:10:20 | - |
7 | −0.1 | 11.3 | 0.74 | 0.05 | 0.78 | 51:48:0.5 | A |
8 | −0.2 | 8.8 | 0.27 | 0.03 | 0.60 | 44:49:0.5 | - |
9 | −0.4 | 6.4 | - | 0.06 | 0.29 | 79:0.5:19 | - |
10 | −0.5 | 8.7 | - | 0.09 | 0.34 | 89:5:5 | - |
11 | −0.5 | 4.6 | 0.26 | 0.01 | 0.08 | 56:-:42 | - |
12 | −0.6 | 7.6 | 0.61 | 0.02 | 0.65 | 72:26:0.5 | A |
13 | −0.8 | 7.6 | 0.70 | 0.03 | 0.33 | 85:2:12 | A |
14 | −1.00 | 8.7 | 0.56 | 0.13 | 0.92 | 53:45:0.5 | A |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Hogberg, P.; Linder, S.; et al. The global carbon cycle: A test of our knowledge of earth as a system. Science 2000, 290, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Canadell, J.G.; Le Quere, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quere, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA. 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 465–570. [Google Scholar]
- Chevallier, F.; Maksyutov, S.; Bousquet, P.; Breon, F.-M.; Saito, R.; Yoshida, Y.; Yokota, T. On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.-E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A.; et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011. [Google Scholar] [CrossRef]
- Morino, I.; Uchino, O.; Inoue, M.; Yoshida, Y.; Yokota, T.; Wennberg, P.O.; Toon, G.C.; Wunch, D.; Roehl, C.M.; Notholt, J.; et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos. Meas. Tech. 2011, 4, 1061–1076. [Google Scholar] [CrossRef]
- Wei, J.; Savtchenko, A.; Vollmer, B.; Hearty, T.; Albayrak, A.; Crisp, D.; Eldering, A. Advances in CO2 observations from airs and acos. IEEE Geosci. Remote Sens. Lett. 2014, 11, 891–895. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Connor, B.; Boesch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Crisp, D.; Eldering, A.; Fisher, B.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Heymann, J.; Bovensmann, H.; Burrows, J.P. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmos. Chem. Phys. 2011, 11, 2863–2880. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting carbon observatory: Inverse method and prospective error analysis. J. Geophys. Res. - Atmos. 2008. [Google Scholar] [CrossRef]
- Yoshida, Y.; Eguchi, N.; Ota, Y.; Kikuchi, N.; Nobuta, K.; Aoki, T.; Yokota, T. Algorithm theoretical basis document (ATBD) for CO2 and CH4 column amounts retrieval from GOSAT TANSO-FTS SWIR; NIES, GOSAT project Document (NIES-GOSAT-PO-014) Version 1.0, 2010. Available online: http://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/doc/documents/ATBD_FTSSWIRL2_V1.1_en.pdf (accessed on 5 November 2015).
- Crisp, D.; Fisher, B.M.; O’Dell, C.; Frankenberg, C.; Basilio, R.; Boesch, H.; Brown, L.R.; Castano, R.; Connor, B.; Deutscher, N.M.; et al. The ACOS CO2 retrieval algorithm—Part ii: Global Xco2 data characterization. Atmos. Meas. Tech. 2012, 5, 687–707. [Google Scholar] [CrossRef]
- Feng, L.; Palmer, P.I.; Boesch, H.; Dance, S. Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble kalman filter. Atmos. Chem. Phys. 2009, 9, 2619–2633. [Google Scholar] [CrossRef]
- Hamazaki, T.; Kuze, A.; Kondo, K. Sensor system for greenhouse gas observing satellite (GOSAT). In Proceedings of SPIE 5543, Infrared Spaceborne Remote Sensing XII, Bellingham, WA, USA, 4 November 2004; pp. 275–282.
- Hamazaki, T.; Kaneko, Y.; Kuze, A.; Kondo, K. Fourier transform spectrometer for Greenhouse Gases observing satellite (GOSAT). In Proceedings of SPIE 5659, Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, Bellingham, WA, USA, 18 January 2005; pp. 73–80.
- Oshchepkov, S.; Bril, A.; Yokota, T. PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space. J. Geophys. Res. - Atmos. 2008. [Google Scholar] [CrossRef]
- Hungershoefer, K.; Breon, F.M.; Peylin, P.; Chevallier, F.; Rayner, P.; Klonecki, A.; Houweling, S.; Marshall, J. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes. Atmos. Chem. Phys. 2010, 10, 10503–10520. [Google Scholar] [CrossRef]
- Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.; Frankenberg, C.; Hartmann, J.M.; Tran, H.; Kuze, A.; et al. Toward accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett. 2011. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Toon, G.C.; Connor, B.J.; Fisher, B.; Osterman, G.B.; Frankenberg, C.; Mandrake, L.; O’Dell, C.; Ahonen, P.; et al. A method for evaluating bias in global measurements of CO2 total columns from space. Atmos. Chem. Phys. 2011, 11, 12317–12337. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, C.M.; Wang, D.Y.; Tian, P.B.; Bai, W.G.; Zhang, X.Y.; Zhang, P.; Dai, H.S.; Wu, Q.M. Comparison of atmospheric CO2 observed by GOSAT and two ground stations in China. Int. J. Remote Sens. 2013, 34, 3938–3946. [Google Scholar] [CrossRef]
- Lei, L.; Guan, X.; Zeng, Z.; Zhang, B.; Ru, F.; Bu, R. A comparison of atmospheric CO2 concentration GOSAT-based observations and model simulations. Sci. Chin.-Earth Sci. 2014, 57, 1393–1402. [Google Scholar] [CrossRef]
- Belikov, D.A.; Bril, A.; Maksyutov, S.; Oshchepkov, S.; Saeki, T.; Takagi, H.; Yoshida, Y.; Ganshin, A.; Zhuravlev, R.; Aoki, S.; et al. Column-averaged CO2 concentrations in the subarctic from GOSAT retrievals and NIES transport model simulations. Polar Sci. 2014, 8, 129–145. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.Y.; Zhang, L.Y.; Gao, L.; Tian, L. Interpreting seasonal changes of low-tropospheric CO2 over china based on SCIAMACHY observations during 2003–2011. Atmos. Environ. 2015, 103, 180–187. [Google Scholar] [CrossRef]
- Maksyutov, S.; Takagi, H.; Valsala, V.K.; Saito, M.; Oda, T.; Saeki, T.; Belikov, D.A.; Saito, R.; Ito, A.; Yoshida, Y.; et al. Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations. Atmos. Chem. Phys. 2013, 13, 9351–9373. [Google Scholar] [CrossRef]
- Deng, F.; Jones, D.B.A.; Henze, D.K.; Bousserez, N.; Bowman, K.W.; Fisher, J.B.; Nassar, R.; O’Dell, C.; Wunch, D.; Wennberg, P.O.; et al. Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data. Atmos. Chem. Phys. 2014, 14, 3703–3727. [Google Scholar] [CrossRef]
- Ciais, P.; Rayner, P.; Chevallier, F.; Bousquet, P.; Logan, M.; Peylin, P.; Ramonet, M. Atmospheric inversions for estimating CO2 fluxes: Methods and perspectives. Clim. Change 2010, 103, 69–92. [Google Scholar] [CrossRef]
- Kort, E.A.; Frankenberg, C.; Miller, C.E.; Oda, T. Space-based observations of megacity carbon dioxide. Geophys. Res. Lett. 2012. [Google Scholar] [CrossRef]
- Keppel-Aleks, G.; Wennberg, P.O.; O’Dell, C.W.; Wunch, D. Towards constraints on fossil fuel emissions from total column carbon dioxide. Atmos. Chem. Phys. 2013, 13, 4349–4357. [Google Scholar] [CrossRef]
- Musdholifah, A.; Hashim, S.Z.M.; Ngah, R. Hybrid PCA-ILGC clustering approach for high dimensional data. IEEE Sys. Man. Cybern. 2012, 420–424. [Google Scholar]
- Deng, M.; Liu, Q.L.; Wang, J.Q.; Shi, Y. A general method of spatio-temporal clustering analysis. Sci. China Inform Sci. 2013. [Google Scholar] [CrossRef]
- Steinbach, M.; Tan, P.-N.; Kumar, V.; Potter, C.; Klooster, S.; Torregrosa, A. Clustering earth science data: Goals, issues and results. In Proceedings of the Fourth KDD Workshop on Mining Scientific Datasets, San Francisco, CA, USA, 26 August 2001.
- Steinbach, M.; Tan, P.-N.; Kumar, V.; Klooster, S.; Potter, C. Discovery of climate indices using clustering. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, DC, USA, 24–27 August 2003; ACM: New York, NY, USA, 2003; pp. 446–455. [Google Scholar]
- Oda, T.; Maksyutov, S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, J.; Li, L.; Lei, L.; Li, J. China’s sizeable and uncertain carbon sink: A perspective from GOSAT. Chin. Sci. Bull. 2014, 59, 1547–1555. [Google Scholar] [CrossRef]
- Zeng, Z.; Lei, L.; Hou, S.; Ru, F.; Guan, X.; Zhang, B. A regional gap-filling method based on spatiotemporal variogram model of CO2 columns. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3594–3603. [Google Scholar] [CrossRef]
- Guo, L.J.; Lei, L.P.; Zeng, Z.C.; Zou, P.F.; Liu, D.; Zhang, B. Evaluation of spatio-temporal variogram models for mapping Xco2 using satellite observations: A case study in china. IEEE J. Selected Topics in Appl. Earth Observations Remote Sens. 2015, 8, 376–385. [Google Scholar] [CrossRef]
- Zeng, Z.; Lei, L.; Guo, L.; Zhang, L.; Zhang, B. Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China. Chin. Sci. Bull. 2013, 58, 1948–1954. [Google Scholar] [CrossRef]
- Osterman, G.; Eldering, A.; Avis, C.; O’Dell, C.; Martinez, E.; Crisp, D.; Frankenberg, C.; Fisher, B.; Wunch, D. ACOS 3.3 Level 2 Standard Product Data User’s Guide, v3.3; GES DISC: Greenbelt, MD, USA, 2011. [Google Scholar]
- Ciais, P.; Dolman, A.J.; Bombelli, A.; Duren, R.; Peregon, A.; Rayner, P.J.; Miller, C.; Gobron, N.; Kinderman, G.; Marland, G.; et al. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 2014, 11, 3547–3602. [Google Scholar] [CrossRef] [Green Version]
- Olivier, J.G.J.; Janssens-Maenhout, G. Part iii: Greenhouse gas emissions: 1. Shares and trends in greenhouse gas emissions; 2. Sources and methods; total greenhouse gas emissions. In CO2 Emissions from Fuel Combustion, 2012 edition; IEA: Paris, France, 2012. [Google Scholar]
- Mu, S.; Zhou, S.; Chen, Y.; Li, J.; Ju, W.; Odeh, I.O.A. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in inner mongolian grassland, China. Global Planet. Change 2013, 108, 29–41. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Bounoua, L.; DeFries, R.; Lawrence, W.T.; Stutzer, D.; Tucker, C.J.; Ricketts, T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ. 2004, 89, 434–443. [Google Scholar] [CrossRef]
- Selim, S.Z.; Ismail, M.A. K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Pena, J.M.; Lozano, J.A.; Larranaga, P. An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognit. Lett. 1999, 20, 1027–1040. [Google Scholar] [CrossRef]
- Yang, M.D. A genetic algorithm (GA) based automated classifier for remote sensing imagery. Can. J. Remote Sens. 2007, 33, 203–213. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Chen, G.X.; Jaradat, S.A.; Banerjee, N.; Tanaka, T.S.; Ko, M.S.H.; Zhang, M.Q. Evaluation and comparison of clustering algorithms in analyzing ES cell gene expression data. Stat. Sin. 2002, 12, 241–262. [Google Scholar]
- Barichivich, J.; Briffa, K.R.; Myneni, R.B.; Osborn, T.J.; Melvin, T.M.; Ciais, P.; Piao, S.; Tucker, C. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Global Change Biol. 2013, 19, 3167–3183. [Google Scholar] [CrossRef] [PubMed]
- Keeling, C.D.; Chin, J.F.S.; Whorf, T.P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 1996, 382, 146–149. [Google Scholar] [CrossRef]
- Buermann, W.; Lintner, B.R.; Koven, C.D.; Angert, A.; Pinzon, J.E.; Tucker, C.J.; Fung, I.Y. The changing carbon cycle at Mauna Loa Observatory. Proc. Natl. Acad. Sci. USA. 2007, 104, 4249–4254. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Lei, L.; Guo, L.; Zeng, Z.-C. A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption. Atmosphere 2015, 6, 1695-1713. https://doi.org/10.3390/atmos6111695
Liu D, Lei L, Guo L, Zeng Z-C. A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption. Atmosphere. 2015; 6(11):1695-1713. https://doi.org/10.3390/atmos6111695
Chicago/Turabian StyleLiu, Da, Liping Lei, Lijie Guo, and Zhao-Cheng Zeng. 2015. "A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption" Atmosphere 6, no. 11: 1695-1713. https://doi.org/10.3390/atmos6111695
APA StyleLiu, D., Lei, L., Guo, L., & Zeng, Z. -C. (2015). A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption. Atmosphere, 6(11), 1695-1713. https://doi.org/10.3390/atmos6111695