Reconstructing Fire Records from Ground-Based Routine Aerosol Monitoring
Abstract
:1. Introduction
2. Data Sources
2.1. IMPROVE Aerosol Data
2.2. Satellite Data
3. Identifying Fire Events
3.1. Selecting Fire Identification Criteria
3.2. Determining Threshold Values for Fire Identification Criteria
3.3. Applying the Approach to Identify Fire Events
3.4. Testing Fire Identification Criteria
4. Discussion of Uncertainties and Limitations
5. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Crutzen, P.L.; Andteae, M.O. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.S.; Eck, T.F.; Christopher, S.A.; Koppmann, R.; Dubovik, O.; Eleuterio, D.P.; Holben, B.N.; Reid, E.A.; Zhang, J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 827–849. [Google Scholar] [CrossRef]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef]
- Mielonen, T.; Aaltonen, V.; Lihavainen, H.; Hyvarunen, A.; Arola, A.; Komppula, M.; Kivi, R. Biomass burning aerosols abserved in Northern Finland during the 2010 wildfires in Russia. Atmosphere 2013, 4, 17–34. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.; O’Neill, S.; Wynne, K.K. Estimating emissions from fires in North America for air quality modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Burling, I.R.; Yokelson, R.J.; Akagi, S.K.; Urbanski, S.P.; Wold, C.E.; Griffith, D.W.T.; Johnson, T.J.; Reardon, J.; Weise, D.R. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States. Atmos. Chem. Phys. 2011, 11, 12197–12216. [Google Scholar] [CrossRef]
- Hsu, N.C.; Herman, J.R.; Bhartia, P.K.; Seftor, C.J.; Torres, O.; Thompson, A.M.; Gleason, J.F.; Eck, T.F.; Holben, B.N. Detection of biomass burning from TOMS measurements. Geophys. Res. Lett. 1996, 23, 745–748. [Google Scholar] [CrossRef]
- Ichoku, G.; Giglio, L.; Wooster, M.J.; Remer, L.A. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens. Environ. 2008, 112, 2950–2962. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Kondragunta, S. Temporal and spatial variability in biomass burned area across the USA derived from the GOES fire product. Remote Sens. Environ. 2008, 112, 2886–2897. [Google Scholar] [CrossRef]
- Duncan, B.N.; Martin, R.V.; Staudt, A.C.; Yevich, R.; Logan, J.A. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A.; Nair, U.S.; Reid, J.S.; Prins, E.M.; Szykman, J.; Hand, J. Mesoscale modeling of Central American smoke transport to the United States: 1. “Top-down” assessment of emission strength and diurnal variation impacts. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhstla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emission and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Environ. 2010, 40, 3419–3432. [Google Scholar]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Boys, B.L.; Martin, R.V.; van Donkelaar, A.; MacDonell, R.J.; Hsu, N.C.; Cooper, M.J.; Yantosca, R.M.; Lu, Z.; Streets, D.G.; Zhang, Q.; et al. Fifteen-year global time series of satellite-derived fine particulate matter. Environ. Sci. Technol. 2014, 48, 11109–11118. [Google Scholar] [CrossRef] [PubMed]
- Pitchford, M.L.; Malm, W.C. Development and applications of a standard visual index. Atmos. Environ. 1994, 28, 1049–1054. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Burling, I.R.; Gilman, J.B.; Warneke, C.; Stockwell, C.E.; de Gouw, J.; Akagi, S.K.; Urbanski, S.P.; Veres, P.; et al. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmos. Chem. Phys. 2013, 13, 89–116. [Google Scholar] [CrossRef]
- Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. Forest Ecol. Manag. 2014, 317, 51–60. [Google Scholar] [CrossRef]
- Janhall, S.; Andreae, M.O.; Poschl, U. Biomass burning aerosol emissions from vegetation fires: Particle number and mass emission factors and size distributions. Atmos. Chem. Phys. 2010, 10, 1427–1439. [Google Scholar] [CrossRef]
- Deng, C.R. Identification of Biomass Burning Source in Aerosols and the Formation Mechanism of Haze. Ph.D. Thesis, University of Fudan, Shanghai, China, 15 April 2011. [Google Scholar]
- Amodio, M.; Andriani, E.; Dambruoso, P.R.; Daresta, B.E.; de Gennaro, G.; di Gilio, A.; Intini, M.; Palmisani, J.; Tutino, M. Impact of biomass burning on PM10 concentrations. Fresen. Environ. Bull. 2012, 21, 3296–3300. [Google Scholar]
- The NASA Earth Observatory’s Natural Hazards fire products. Available online: http://earthobservatory.nasa.gov/NaturalHazards/category.php?cat_id=8&m=01&y=2013 (accessed on 23 July 2013).
- MODIS fire maps. Available online: http://reverb.echo.nasa.gov/reverb/#utf8=%E2%9C%93&spatial_map=satellite&spatial_type=rectangle&keywords=MOD14 (accessed on 23 July 2013).
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Keeley, J.E.; Zedler, P.H. Large, high-intensity fire events in southern California shrublands: Debunking the fine-grain age patch model. Ecol. Appl. 2009, 19, 2254. [Google Scholar] [CrossRef]
- Bell, M.L.; Dominici, F.; Ebisu, K.; Zeger, S.L.; Samet, J.M. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect. 2007, 115, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Draxler, R.R.; Rolph, G.D. HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model access via NOAA ARL READY. Available online: http://www.arl.noaa.gov/HYSPLIT_info.php (accessed on 23 July 2012).
- Rolph, G.D. Real-time Environmental Applications and Display System (READY). Available online: http://ready.arl.noaa.gov/index.php (accessed on 23 July 2012).
- The National Interagency Fire Center. Available online: http://www.nifc.gov/fireInfo/fireInfo_statistics.html (accessed on 23 July 2013).
- The United States Geological Survey record of fire events. Available online: http://wildfire.cr.usgs.gov/firehistory/data.html (accessed on 23 July 2013).
- Iniguez, J.M.; Swetnam, T.W.; Baisan, C.H. Spatially and temporally variable fire regime on Rincon Peak, Arizona, USA. Fire Ecol. 2009, 5, 3–21. [Google Scholar] [CrossRef]
- Pu, R.; Li, Z.; Gong, P.; Csiszar, I.; Fraser, R.; Hao, W.; Kondragunta, S.; Weng, F. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data. Remote Sens. Environ. 2007, 108, 198–208. [Google Scholar] [CrossRef]
Indicator | PM2.5 (µg/m3) | PM10 (µg/m3) | PM2.5/PM10 | OC/PM2.5 | EC/PM2.5 | K/PM2.5 | Soil/PM2.5 |
---|---|---|---|---|---|---|---|
Static threshold | >15 | >18 | >0.6 | >0.35 | >0.05 | >0.003 | <0.03 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Tong, D.Q.; Lee, P.; Kim, H.; Lei, H. Reconstructing Fire Records from Ground-Based Routine Aerosol Monitoring. Atmosphere 2016, 7, 43. https://doi.org/10.3390/atmos7030043
Zhao H, Tong DQ, Lee P, Kim H, Lei H. Reconstructing Fire Records from Ground-Based Routine Aerosol Monitoring. Atmosphere. 2016; 7(3):43. https://doi.org/10.3390/atmos7030043
Chicago/Turabian StyleZhao, Hongmei, Daniel Q. Tong, Pius Lee, Hyuncheol Kim, and Hang Lei. 2016. "Reconstructing Fire Records from Ground-Based Routine Aerosol Monitoring" Atmosphere 7, no. 3: 43. https://doi.org/10.3390/atmos7030043
APA StyleZhao, H., Tong, D. Q., Lee, P., Kim, H., & Lei, H. (2016). Reconstructing Fire Records from Ground-Based Routine Aerosol Monitoring. Atmosphere, 7(3), 43. https://doi.org/10.3390/atmos7030043