Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Acquisition
2.2.1. Ambient Air Quality
2.2.2. Land Use Information
2.2.3. Other Factors Influence Air Quality
Socio-economic Development and Energy Use
Traffic Emission
Industry Emission
Meteorological Condition
2.3. Methods
2.3.1. Buffer Analysis
2.3.2. Correlation Analysis and Regression Modeling
2.3.3. Cross Validation
3. Results
3.1. Spatio-Temporal Variation of Air Pollutants
3.2. Land Use Pattern and Change
3.3. Correlation Analysis between Land Use Variables and Air Pollutants
3.4. Quantitative Effects of Land Use on Air Quality
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Foley, J.A. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Fragkias, M.; Gueneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L. Urban land density function: A new method to characterize urban expansion. Landsc. Urban Plan 2015, 139, 26–39. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Duh, J.; Shandas, V.; Chang, H.; George, L.A. Rates of urbanisation and the resiliency of air and water quality. Sci. Total Environ. 2008, 400, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Heald, C.L.; Spracklen, D.V. Land Use Change Impacts on Air Quality and Climate. Chem. Rev. 2015, 115, 4476–4496. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.I.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Fu, P.; Weng, Q. Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States. Remote Sens. 2015, 7, 4880–4898. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, C.; Hu, Y.; Kuang, W. Urban Land-Cover Change and Its Impact on the Ecosystem Carbon Storage in a Dryland City. Remote Sens. 2016, 8, 6. [Google Scholar] [CrossRef]
- Song, J.; Webb, A.; Parmenter, B.; Allen, D.T.; McDonald-Buller, E. The Impacts of Urbanization on Emissions and Air Quality: Comparison of Four Visions of Austin, Texas. Environ. Sci. Technol. 2008, 42, 7294–7300. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yang, S.; Xu, X.; Zhang, W. The impacts of urbanization on air quality over the Pearl River Delta in winter: Roles of urban land use and emission distribution. Theor. Appl. Climatol. 2014, 117, 29–39. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Li, G.; Sun, D.; Miao, Z. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models. Sustainability 2015, 7, 15570–15592. [Google Scholar] [CrossRef]
- Tecer, L.H.; Tagil, S. Impact of Urbanization on Local Air Quality: Differences in Urban and Rural Areas of Balikesir, Turkey. Clean Soil Air Water 2014, 42, 1489–1499. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Fenger, J. Air pollution in the last 50 years—From local to global. Atmos. Environ. 2009, 43, 13–22. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed]
- Romero, H.; Ihl, M.; Rivera, A.; Zalazar, P.; Azocar, P. Rapid urban growth, land-use changes and air pollution in Santiago, Chile. Atmos. Environ. 1999, 33, 4039–4047. [Google Scholar] [CrossRef]
- Weng, Q.; Yang, S. Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS. Environ. Monit. Assess. 2006, 117, 463–489. [Google Scholar] [CrossRef] [PubMed]
- Xian, G. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations. Int. J. Remote Sens. 2007, 28, 5427–5445. [Google Scholar] [CrossRef]
- Superczynski, S.D.; Christopher, S.A. Exploring Land Use and Land Cover Effects on Air Quality in Central Alabama Using GIS and Remote Sensing. Remote Sens. 2011, 3, 2552–2567. [Google Scholar] [CrossRef]
- Huang, Y.; Luvsan, M.; Gombojav, E.; Ochir, C.; Bulgan, J.; Chan, C. Land use patterns and SO2 and NO2 pollution in Ulaanbaatar, Mongolia. Environ. Res. 2013, 124, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, J.M.; Coelho, M.C.; Sá, M.E.; Tavares, R.; Borrego, C. Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Sci. Total. Environ. 2011, 409, 1154–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fameli, K.; Assimakopoulos, V.; Kotroni, V.; Retalis, A. Effect of the land use change characteristics on the air pollution patterns above the greater Athens area (GAA) after 2004. Glob. Nest J. 2013, 15, 169–177. [Google Scholar]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many pathways from land use to health—Associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Jazcilevich, A.D.; Garc A, A.N.R.; Ru Z-Suárez, L.G. A modeling study of air pollution modulation through land-use change in the Valley of Mexico. Atmos. Environ. 2002, 36, 2297–2307. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Irga, P.J.; Burchett, M.D.; Torpy, F.R. Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmos. Environ. 2015, 120, 173–181. [Google Scholar] [CrossRef]
- Du, N.; Ottens, H.; Sliuzas, R. Spatial impact of urban expansion on surface water bodies—A case study of Wuhan, China. Landsc. Urban Plan 2010, 94, 175–185. [Google Scholar] [CrossRef]
- Wilby, R.L. Constructing climate change scenarios of urban heat island intensity and air quality. Environ. Plan. B Plan. Des. 2008, 35, 902–919. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Civerolo, K.; Hogrefe, C.; Lynn, B.; Rosenthal, J.; Ku, J.; Solecki, W.; Cox, J.; Small, C.; Rosenzweig, C.; Goldberg, R.; et al. Estimating the effects of increased urbanization on surface meteorology and ozone concentrations in the New York City metropolitan region. Atmos. Environ. 2007, 41, 1803–1818. [Google Scholar] [CrossRef]
- Shukla, V.; Parikh, K. The environmental consequences of urban growth: Cross-national perspective on economic development, air pollution, and city size. Urban Geogr. 1992, 13, 422–449. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Zou, B.; Luo, Y.; Wan, N.; Zheng, Z.; Sternberg, T.; Liao, Y. Performance comparison of LUR and OK in PM2.5 concentration mapping: A multidimensional perspective. Sci. Rep. 2015, 5, 8698. [Google Scholar] [CrossRef] [PubMed]
- Hennig, F.; Sugiri, D.; Tzivian, L.; Fuks, K.; Moebus, S.; Jöckel, K.; Vienneau, D.; Kuhlbusch, T.; de Hoogh, K.; Memmesheimer, M.; et al. Comparison of Land-Use Regression Modeling with Dispersion and Chemistry Transport Modeling to Assign Air Pollution Concentrations within the Ruhr Area. Atmosphere 2016, 7, 48. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, Y. Geographic Field Model based hedonic valuation of urban open spaces in Wuhan, China. Landsc. Urban Plan 2010, 98, 47–55. [Google Scholar] [CrossRef]
- Jiao, L.; Mao, L.; Liu, Y. Multi-order Landscape Expansion Index: Characterizing urban expansion dynamics. Landsc. Urban Plan 2015, 137, 30–39. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, Y.; Stein, A.; Jiao, L. Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China. Int. J. Appl. Earth Obs. 2015, 34, 10–24. [Google Scholar] [CrossRef]
- Tan, R.; Liu, Y.; Zhou, K.; Jiao, L.; Tang, W. A game-theory based agent-cellular model for use in urban growth simulation: A case study of the rapidly urbanizing Wuhan area of central China. Comput. Environ. Urban Syst. 2015, 49, 15–29. [Google Scholar] [CrossRef]
- Wuhan Bureau of Statistics. Wuhan Statistical Yearbook 2014; China Statistics Press: Beijing, China, 2014. [Google Scholar]
- MEP of China. Ambient Air Quality standard (GB 3095-2012); China Environmental Science Press: Beijing, China, 2012. [Google Scholar]
- Wuhan Environmental Monitoring Center. Available online: http://www.whemc.cn/news/hjzkgb/index.html (accessed on 16 October 2015).
- Geospatial Data Cloud. Available online: http://www.gscloud.cn (accessed on 27 September 2015).
- Gao, J.; Zha, Y. Meteorological Influence on Predicting Air Pollution from MODIS-Derived Aerosol Optical Thickness: A Case Study in Nanjing, China. Remote Sens. 2010, 2, 2136–2147. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Cheng, H.; Lv, X.; Gong, W.; Wang, X.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total Environ. 2015, 518–519, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Baili, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22, 1364–1373. [Google Scholar] [CrossRef]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [Google Scholar] [CrossRef] [PubMed]
- Novotny, E.V.; Bechle, M.J.; Millet, D.B.; Marshall, J.D. National Satellite-Based Land-Use Regression: NO2 in the United States. Environ. Sci. Technol. 2011, 45, 4407–4414. [Google Scholar] [CrossRef] [PubMed]
- MEP of China. Ambient air quality standard (GB 3065-1996); China Environmental Science Press: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Gong, W.; Zhang, T.; Zhu, Z.; Ma, Y.; Ma, X.; Wang, W. Characteristics of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon in Wuhan, Central China. Atmosphere 2015, 6, 1377–1387. [Google Scholar] [CrossRef]
- Feng, Q.; Wu, S.; Du, Y.; Li, X.; Ling, F.; Xue, H.; Cai, S. Variations of PM10 concentrations in Wuhan, China. Environ. Monit. Assess. 2011, 176, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Westerdahl, D.; Wang, X.; Pan, X.; Zhang, K.M. Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmos. Environ. 2009, 43, 697–705. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, L.; Liu, Y.; Liu, W. Spatial Sampling Strategies for the Effect of Interpolation Accuracy. ISPRS Int. J. Geo Inf. 2015, 4, 2742–2768. [Google Scholar] [CrossRef]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Effects of Income and Urban Form on Urban NO2: Global Evidence from Satellites. Environ. Sci. Technol. 2011, 45, 4914–4919. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhao, W.; Huang, Y.; Cheng, S.; Liu, C. Research on the Coupling Coordination Relationship between Urbanization and the Air Environment: A Case Study of the Area of Wuhan. Atmosphere 2015, 6, 1539–1558. [Google Scholar] [CrossRef]
- Hidas, P.; Shiran, G.R.; Black, J.A. An Air Quality Prediction Model Incorporating Traffic, Meteorological and Built Form Factors: The Assessment of Land Use and Transport Strategies in Sydney. In Proceedings of the 30th International Symposium on Automotive Technology and Automation, Florence, Italy, 14–19 June 1997.
Factors | Variables | Description | Unit |
---|---|---|---|
Land use | built-up land | areas of land within buffer with optimum radius | km2 |
water bodies | the same as above | km2 | |
vegetation | the same as above | km2 | |
Socio-economic development | population | residential population of districts | 10,000 person |
GDP | GDP of districts | 100 million yuan | |
Energy use | energy consumption | energy consumption by enterprises of districts | 10,000 tons |
energy efficiency | energy consumption per unit of GDP of districts | tons of standard coal per 10,000 yuan | |
Traffic emission | road density | road length within 2-km buffer | km |
Industry emission | industrial waste gas emission | the total emission apportioned by the number of enterprises of districts | 100 million standard cubic meters |
Meteorological condition | temperature | annual average temperature | °C |
precipitation | number of days with precipitation ≥0.1 mm throughout a year | - |
No. | Site Name | Averaged Proportion (2007–2010) | Averaged Proportion (2011–2014) | ||||
---|---|---|---|---|---|---|---|
Built-up Land | Water Bodies | Vegetation | Built-up Land | Water Bodies | Vegetation | ||
1 | Hankou jiangtan | 73.8% | 23.1% | 3.1% | 71.1%, ↓ | 22.2%, ↓ | 6.7%, ↑ |
2 | Hankou huaqiao | 89.9% | 6.7% | 3.4% | 87.5%, ↓ | 6.0%, ↓ | 6.5%, ↑ |
3 | Hanyang yuehu | 73.9% | 19.4% | 6.7% | 70.7%, ↓ | 18.9%, ↓ | 10.3%, ↑ |
4 | Wuchang ziyang | 78.0% | 18.9% | 3.1% | 75.8%, ↓ | 18.1%, ↓ | 6.1%, ↑ |
5 | Donghu liyuan | 47.4% | 40.8% | 11.8% | 48.2%, ↑ | 39.7%, ↓ | 12.1%, ↑ |
6 | Qingshan ganghua | 62.4% | 28.6% | 9.0% | 61.4%, ↓ | 27.0%, ↓ | 11.6%, ↑ |
7 | Wujiashan | 61.8% | 4.2% | 34.0% | 67.3%, ↑ | 5.4%, ↑ | 27.4%, ↓ |
8 | Zhuankou xinqu | 62.2% | 18.7% | 19.1% | 63.4%, ↑ | 16.0%, ↓ | 20.6%, ↑ |
9 | Donghu gaoxin | 65.5% | 17.6% | 16.9% | 70.1%, ↑ | 17.4%, ↓ | 12.4%, ↓ |
- | On average | 68.3% | 19.8% | 11.9% | 68.4%, ↑ | 19.0%, ↓ | 12.6%, ↑ |
Land Use Category | Buffer Radius | SO2 | NO2 | PM10 | |||
---|---|---|---|---|---|---|---|
Pearson’s r | p | Pearson’s r | p | Pearson’s r | p | ||
Built-up land | 0.5 km | 0.248 ** | 0.036 | 0.001 | 0.991 | 0.125 | 0.297 |
1 km | 0.280 **,b | 0.017 | 0.220 * | 0.063 | 0.219 * | 0.065 | |
2 km | 0.231 * | 0.050 | 0.347 *** | 0.003 | 0.188 | 0.114 | |
3 km | 0.202 * | 0.089 | 0.374 *** | 0.001 | 0.051 | 0.673 | |
4 km | 0.146 | 0.220 | 0.411 *** | 0.000 | −0.038 | 0.750 | |
Water bodies | 0.5 km | −0.083 | 0.489 | 0.172 | 0.149 | −0.313 *** | 0.007 |
1 km | −0.210 * | 0.088 | −0.101 | 0.416 | −0.401 *** | 0.001 | |
2 km | −0.194 | 0.103 | −0.234 ** | 0.048 | −0.343 *** | 0.003 | |
3 km | −0.180 | 0.131 | −0.210 * | 0.077 | −0.224 * | 0.058 | |
4 km | −0.143 | 0.229 | −0.190 | 0.109 | −0.209 * | 0.078 | |
Vegetation | 0.5 km | −0.167 | 0.162 | −0.485 *** | 0.000 | −0.079 | 0.512 |
1 km | −0.224 * | 0.059 | −0.486 *** | 0.000 | −0.090 | 0.450 | |
2 km | −0.125 | 0.295 | −0.276 ** | 0.019 | −0.242 ** | 0.040 | |
3 km | −0.091 | 0.449 | −0.298 ** | 0.011 | −0.201 * | 0.091 | |
4 km | −0.083 | 0.490 | −0.322 *** | 0.006 | −0.155 | 0.193 |
Variables | (1) SO2 | (2) NO2 | (3) PM10 |
---|---|---|---|
Land use | |||
built-up land | 0.104 ** | ||
water bodies | −0.217 *** | −0.304 *** | |
vegetation | −0.315 *** | ||
Socio-economic development | |||
population | |||
GDP | −0.520 *** | 0.658 *** | |
Energy use | |||
energy consumption | 1.774 *** | ||
energy efficiency | 0.217 *** | ||
Traffic emission | |||
road density | 0.586 *** | ||
Industry emission | |||
industrial waste gas emission | −0.337 *** | 1.558 *** | |
Meteorological conditions | |||
temperature | |||
precipitation | −0.307 *** | −0.188 ** | −0.159 * |
Model Performance | |||
adjusted R2 | 0.696 | 0.575 | 0.594 |
standard error of estimate (μg/m3) | 5.51 | 5.47 | 7.35 |
model p-value | 0.000 *** | 0.000 *** | 0.000 *** |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Jiao, L.; Zhao, S.; Yuan, M.; Li, X.; Han, Y.; Zhang, B.; Dong, T. Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China. Atmosphere 2016, 7, 62. https://doi.org/10.3390/atmos7050062
Xu G, Jiao L, Zhao S, Yuan M, Li X, Han Y, Zhang B, Dong T. Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China. Atmosphere. 2016; 7(5):62. https://doi.org/10.3390/atmos7050062
Chicago/Turabian StyleXu, Gang, Limin Jiao, Suli Zhao, Man Yuan, Xiaoming Li, Yuyao Han, Boen Zhang, and Ting Dong. 2016. "Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China" Atmosphere 7, no. 5: 62. https://doi.org/10.3390/atmos7050062
APA StyleXu, G., Jiao, L., Zhao, S., Yuan, M., Li, X., Han, Y., Zhang, B., & Dong, T. (2016). Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China. Atmosphere, 7(5), 62. https://doi.org/10.3390/atmos7050062