Satellite Observations of Cloud-Related Variations in Aerosol Properties
Abstract
:1. Introduction
2. Characterization of the Transition Zone Surrounding Clouds
3. Dependence of Aerosol Properties on Regional Cloud Fraction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Ignatov, A.; Minnis, P.; Loeb, N.G.; Wielicki, B.; Miller, W.; Sun-Mack, S.; Tanré, D.; Remer, L.; László, I.; Geier, E. Two MODIS aerosol products over ocean on the Terra and Aqua CERES SSF. J. Atmos. Sci. 2005, 62, 1008–1031. [Google Scholar] [CrossRef]
- Loeb, N.G.; Manalo-Smith, N. Top-of-Atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J. Clim. 2005, 18, 3506–3526. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S.; Holben, B.N. An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products. Geophys. Res. Lett. 2005, 32, L15803. [Google Scholar] [CrossRef]
- Loeb, N.G.; Schuster, G.L. An observational study of the relationship between cloud, aerosol and meteorology in broken low-level cloud conditions. J. Geophys. Res. 2008, 113, D14214. [Google Scholar] [CrossRef]
- Koren, I.; Remer, L.A.; Kaufman, Y.J.; Rudich, Y.; Martins, J.V. On the twilight zone between clouds and aerosols. Geophys. Res. Lett. 2007, 34, L08805. [Google Scholar] [CrossRef]
- Su, W.; Schuster, G.L.; Loeb, N.G.; Rogers, R.R.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Obland, M.D. Aerosol and cloud interaction observed from high spectral resolution lidar data. J. Geophys. Res. 2008, 113, D24202. [Google Scholar] [CrossRef]
- Redemann, J.; Zhang, Q.; Russell, P.B.; Livingston, J.M.; Remer, L.A. Case Studies of Aerosol Remote Sensing in the Vicinity of Clouds. J. Geophys. Res. 2009, 114, D6. [Google Scholar] [CrossRef]
- Tackett, J.L.; Di Girolamo, L. Enhanced aerosol backscatter adjacent to tropical trade wind clouds revealed by satellite-based lidar. Geophys. Res. Lett. 2009, 36, L14804. [Google Scholar] [CrossRef]
- Twohy, C.H.; Coakley, J.A., Jr.; Tahnk, W.R. Effect of changes in relative humidity on aerosol scattering near clouds. J. Geophys. Res. 2009, 114, D05205. [Google Scholar] [CrossRef]
- Rauber, R.M.; Zhao, G.; Di Girolamo, L.; Colón-Robles, M. Aerosol Size Distribution, Particle Concentration, and Optical Property Variability near Caribbean Trade Cumulus Clouds: Isolating Effects of Vertical Transport and Cloud Processing from Humidification Using Aircraft Measurements. J. Atmos. Sci. 2013, 70, 3063–3083. [Google Scholar] [CrossRef]
- Hudson, J.G.; Noble, S.; Tabor, S. Cloud supersaturations from CCN spectra Hoppel minima. J. Geophys. Res. 2015, 120, 3436–3452. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Giles, D.M.; Rivas, M.A.; Singh, R.P.; Tripathi, S.N.; Bruegge, C.J.; Platnick, S.; Arnold, G.T.; et al. Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET). J. Geophys. Res. 2012, 117, D07206. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Arola, A.; Ferrare, R.A.; Hostetler, C.A.; Crumeyrolle, S.N.; Berkoff, T.A.; Welton, E.J.; Lolli, S.; et al. Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds. Atmos. Chem. Phys. 2014, 14, 11633–11656. [Google Scholar] [CrossRef] [Green Version]
- Koren, I.; Feingold, G.; Jiang, H.; Altaratz, O. Aerosol effects on the inter-cloud region of a small cumulus cloud field. Geophys. Res. Lett. 2009, 36, L14805. [Google Scholar] [CrossRef]
- Bar-Or, R.Z.; Koren, I.; Altaratz, O.; Fredj, E. Radiative properties of humidified aerosols in cloudy environment. Atmos. Res. 2012, 118, 280–294. [Google Scholar] [CrossRef]
- Jeong, M.J.; Li, Z. Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges. J. Geophys. Res. 2010, 115, D00K32. [Google Scholar] [CrossRef]
- Chand, D.; Wood, R.; Ghan, S.; Wang, M.; Ovchinnikov, M.; Rasch, P.J.; Miller, S.; Schichtel, B.; Moore, T. Aerosol optical depth enhancement in partly cloudy conditions. J. Geophys. Res. 2012, 117, D17207. [Google Scholar] [CrossRef]
- Arola, A.; Eck, T.F.; Kokkola, H.; Pitkänen, M.R.A.; Romakkaniemi, S. Assessment of cloud-related fine-mode AOD enhancements based on AERONET SDA product. Atmos. Chem. Phys. 2017, 17, 5991–6001. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Xian, P.; Giles, D.M.; Sinyuk, A.; Smirnov, A.; Schafer, J.S.; Slutsker, I.; Kim, J.; et al. Observations of the interaction and transport of fine mode aerosols with cloud and/or fog in Northeast Asia from Aerosol Robotic Network and satellite remote sensing. J. Geophys. Res. 2018, 123, 5560–5587. [Google Scholar] [CrossRef]
- Schwarz, K.; Cermak, J.; Fuchs, J.; Andersen, H. Mapping the Twilight Zone—What We Are Missing between Clouds and Aerosols. Remote Sens. 2017, 9, 577. [Google Scholar] [CrossRef]
- Konwar, M.; Panicker, A.S.; Axisa, D.; Prabha, T.V. Near-cloud aerosols in monsoon environment and its impact on radiative forcing. J. Geophys. Res. 2015, 120, 1445–1457. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.W.; Neubauer, D.; Poulsen, C.A.; Thomas, G.E.; McGarragh, G.R.; Povey, A.C.; Proud, S.R.; Grainger, R.G. Unveiling aerosol–cloud interactions—Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate. Atmos. Chem. Phys. 2017, 17, 13151–13164. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z. Significant underestimation in the optically based estimation of the aerosol first indirect effect induced by the aerosol swelling effect. Geophys. Res. Lett. 2018, 45, 5690–5699. [Google Scholar] [CrossRef]
- Stap, F.A.; Hasekamp, O.P.; Emde, C.; Röckmann, T. Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: Synthetic study based on a large eddy simulation. J. Geophys. Res. 2016, 121, 12914–12935. [Google Scholar] [CrossRef]
- Quaas, J.; Stevens, B.; Stier, P.; Lohmann, U. Interpreting the cloud cover–aerosol optical depth relationship found in satellite data using a general circulation model. Atmos. Chem. Phys. 2010, 10, 6129–6135. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. Global CALIPSO observations of aerosol changes near clouds. IEEE Geosci. Remote Sens. Lett. 2011, 8, 19–23. [Google Scholar] [CrossRef]
- Xue, H.; Feingold, G.; Stevens, B. Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci. 2008, 65, 392–406. [Google Scholar] [CrossRef]
- Koren, I.; Oreopoulos, L.; Feingold, G.; Remer, L.A.; Altaratz, O. How small is a small cloud? Atmos. Chem. Phys. 2008, 8, 3855–3864. [Google Scholar] [CrossRef] [Green Version]
- Ervens, B.; Turpin, B.J.; Weber, R.J. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 22301–22383. [Google Scholar] [CrossRef]
- Harris, E.; Sinha, B.; van Pinxteren, D.; Schneider, J.; Poulain, L.; Collett, J.; D’Anna, B.; Fahlbusch, B.; Foley, S.; Fomba, K.W.; et al. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010. Atmos. Chem. Phys. 2014, 14, 4219–4235. [Google Scholar] [CrossRef] [Green Version]
- Kerkweg, A.; Wurzler, S.; Reisin, T.; Bott, A. On the cloud processing of aerosol particles: An entraining air-parcel model with two-dimensional spectral cloud microphysics and a new formulation of the collection kernel. Q. J. R. Meteorol. Soc. 2003, 129, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Marshak, A.; Wen, G.; Coakley, J.; Remer, L.A.; Loeb, N.G.; Cahalan, R.F. A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res. 2008, 113, D14S17. [Google Scholar] [CrossRef]
- Wen, G.; Marshak, A.; Cahalan, R.F.; Remer, L.A.; Kleidman, R.G. 3D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Wen, G.; Marshak, A.; Cahalan, R.F. Importance of molecular Rayleigh scattering in the enhancement of clear sky radiance in the vicinity of boundary layer cumulus clouds. J. Geophys. Res. 2008, 113, D24207. [Google Scholar] [CrossRef]
- Meister, G.; McClain, C.R. Point-spread function of the ocean color bands of the Moderate Resolution Imaging Spectroradiometer on Aqua. Appl. Opt. 2010, 49, 6276–6285. [Google Scholar] [CrossRef] [PubMed]
- Matheson, M.A.; Coakley, J.A., Jr.; Tahnk, W.R. Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from Advanced Very High Resolution Radiometer observations. J. Geophys. Res. 2005, 110, D24204. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. MODIS observations of enhanced clear sky reflectance near clouds. Geophys. Res. Lett. 2009, 36, L06807. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Franz, B.A.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, J.; Shettle, E.P.; Holben, B.N. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt. 2010, 49, 5545–5560. [Google Scholar] [CrossRef] [PubMed]
- Várnai, T.; Marshak, A.; Eck, T.F. Observation-based study on aerosol optical depth and particle size in partly cloudy regions. J. Geophys. Res. 2017, 122, 10013–10024. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. Near-cloud aerosol properties from the 1-km resolution MODIS ocean product. J. Geophys. Res. 2014, 119, 1546–1554. [Google Scholar] [CrossRef]
- Yang, W.; Marshak, A.; Várnai, T.; Kalashnikova, O.V.; Kostinski, A.B. CALIPSO observations of transatlantic dust: Vertical stratification and effect of clouds. Atmos. Chem. Phys. 2012, 12, 11339–11354. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Várnai, T.; Marshak, A.; Yang, W. Multi-satellite aerosol observations in the vicinity of clouds. Atmos. Chem. Phys. 2013, 13, 3899–3908. [Google Scholar] [CrossRef] [Green Version]
- Várnai, T.; Marshak, A. Analysis of co-located MODIS and CALIPSO observations near clouds. Atmos. Meas. Tech. 2012, 5, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Gryspeerdt, E.; Quaas, J.; Bellouin, N. Constraining the aerosol influence on cloud fraction. J. Geophys. Res. 2016, 121, 3566–3583. [Google Scholar] [CrossRef] [Green Version]
- Várnai, T.; Marshak, A. Effect of cloud fraction on near-cloud aerosol behavior in the MODIS atmospheric correction ocean color product. Remote Sens. 2015, 7, 5283–5299. [Google Scholar] [CrossRef]
- Kleidman, R.G.; O’Neill, N.T.; Remer, L.A.; Kaufman, Y.J.; Eck, T.F.; Tanré, D.; Dubovik, O.; Holben, B.N. Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean. J. Geophys. Res. 2005, 110, D22205. [Google Scholar] [CrossRef]
- Charlson, R.; Ackerman, A.; Bender, F.; Anderson, T.; Liu, Z. On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus 2007, 59, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Kassianov, E.I.; Ovtchinnikov, M. On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds. Geophys. Res. Lett. 2008, 35, L06807. [Google Scholar] [CrossRef]
- Wen, G.; Marshak, A.; Levy, R.C.; Remer, L.A.; Loeb, N.G.; Várnai, T.; Cahalan, R.F. Improvement of MODIS aerosol retrievals near clouds. J. Geophys. Res. 2013, 118, 9168–9181. [Google Scholar] [CrossRef] [Green Version]
- Wen, G.; Marshak, A.; Várnai, T.; Levy, R. Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances. J. Geophys. Res. 2016, 121, 9661–9674. [Google Scholar] [CrossRef]
- Garay, M.J.; Kalashnikova, O.V.; Bull, M.A. Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data. Atmos. Chem. Phys. 2017, 17, 5095–5106. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Martonchik, J.; Wang, Y.; László, I.; Korkin, S. Multi-Angle Implementation of Atmospheric Correction (MAIAC): 1. Radiative Transfer Basis and Look-Up Tables. J. Geophys. Res. 2011, 116, D03210. [Google Scholar] [CrossRef]
- Lyapustin, A.; Korkin, S.; Wang, Y.; Quayle, B.; László, I. Discrimination of biomass burning smoke and clouds in MAIAC algorithm. Atmos. Chem. Phys. 2012, 12, 9679–9686. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.I.; Alexander, M.J.; Ott, L.E.; Molod, A.M.; Holben, B.N.; Susskind, J.; Wang, Y. Observation of mountain lee waves with MODIS NIR column water vapor. Geophys. Res. Lett. 2014, 41, 710–716. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Boreddy, S.K.R.; Kawamura, K.; Mkoma, S.; Fu, P. Hygroscopic behavior of water-soluble matter extracted from biomass burning aerosols collected at a rural site in Tanzania, East Africa. J. Geophys. Res. 2014, 119, 12233–12245. [Google Scholar] [CrossRef]
- Petersik, P.; Salzmann, M.; Kretzschmar, J.; Cherian, R.; Mewes, D.; Quaas, J. Subgrid-scale variability in clear-sky relative humidity and forcing by aerosol–radiation interactions in an atmosphere model. Atmos. Chem. Phys. 2018, 18, 8589–8599. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Várnai, T.; Marshak, A. Satellite Observations of Cloud-Related Variations in Aerosol Properties. Atmosphere 2018, 9, 430. https://doi.org/10.3390/atmos9110430
Várnai T, Marshak A. Satellite Observations of Cloud-Related Variations in Aerosol Properties. Atmosphere. 2018; 9(11):430. https://doi.org/10.3390/atmos9110430
Chicago/Turabian StyleVárnai, Tamás, and Alexander Marshak. 2018. "Satellite Observations of Cloud-Related Variations in Aerosol Properties" Atmosphere 9, no. 11: 430. https://doi.org/10.3390/atmos9110430
APA StyleVárnai, T., & Marshak, A. (2018). Satellite Observations of Cloud-Related Variations in Aerosol Properties. Atmosphere, 9(11), 430. https://doi.org/10.3390/atmos9110430