Spatial–Temporal Variability of Hydrothermal Climate Conditions in the Yellow River Basin from 1957 to 2015
Abstract
:1. Introduction
2. Data Sources and Study Methods
2.1. Study Area
2.2. Data Sources
2.3. Study Methods
3. Results and Analysis
3.1. Annual and Seasonal Variability of Hydrothermal Climate Conditions
3.2. Possible Future Changes of Hydrothermal Climate Conditions
3.3. Spatial Patterns of Hydrothermal Climate Variability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Huang, J.; Guan, X.; Ji, F. Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. 2012, 12, 5391–5398. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.L.; Ma, Z.G.; Gong, Y.F. Comparative analysis of relationship between moisture budget and precipitation change among global significantly wetting/drying regions. Plateau Meteorol. 2015, 34, 1279–1291. [Google Scholar] [CrossRef]
- Thornes, J.E. Climate change 2001: Impacts, adaptation and vulnerability, contribution of working group II to the third assessment report of the Intergovernmental Panel on Climate Change. Int. J. Climatol. 2002, 22, 1285–1286. [Google Scholar] [CrossRef]
- Liu, Y.S.; Liu, Y.; Guo, L.P. Impact of climatic change on agricultural production and response strategies in China. Chin. J. Eco-Agric. 2010, 18, 905–910. [Google Scholar] [CrossRef]
- Cui, Y.P.; Ning, X.; Qin, Y.; Li, X.; Chen, Y. Spatio-temporal changes in agricultural hydrothermal conditions in China from 1951 to 2010. J. Geogr. Sci. 2016, 26, 643–657. [Google Scholar] [CrossRef]
- Du, H.-M.; Yan, J.P.; Wang, P.T. The drought disaster and its response to the warming- drying climate in the 1986 farming-pastoral ecotones in northern China. J. Arid Land Resour. Environ. 2015, 29, 124–128. [Google Scholar] [CrossRef]
- Liu, T.; Huang, H.Q.; Yan, H.M.; Jia, J. The persistence of precipitation series and the trend of drought in northern Agro-pastoral Zone. Resour. Sci. 2012, 34, 940–947. [Google Scholar]
- Zhang, Z.X.; Hu, C.H.; Li, S.H.; Wang, J.J.; Li, X.M. Temporal and Spatial Variation Characteristics of Extreme Temperature Index from 1961 to 2010 in the Yellow River Basin. Meteorol. Environ. Sci. 2015, 38, 48–53. [Google Scholar] [CrossRef]
- Pan, P.; Zhu, Y.L.; Wang, J.J. Spatial-temporal variations of temperature and the cause analyses in the Yellow River valley during recent 50 years. Clim. Environ. Res. 2014, 19, 477–485. [Google Scholar] [CrossRef]
- Zhao, C.P.; Chen, Y.; Wang, W.G.; Gao, Z.J. Temporal and Spatial Variation of Extreme Precipitation Indexes of the Yellow River Basin in Recent 50 Years. Yellow River 2015, 37, 18–22. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.M.; Chang, J.X.; Wei, J. Characteristics and variation trends of seasonal precipitation in the Yellow River Basin. Yellow River 2016, 38, 8–12. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.G.; Zhao, Y.; Li, F.X. Characteristics of climate change of precipitation and rain days in the Yellow River Basin during recent 50 years. Plateau Meteorol. 2014, 33, 43–54. [Google Scholar] [CrossRef]
- Jin, L.J.; Wang, C.Q.; Wang, P.; Guo, T. Analysis of characteristics of the extreme precipitation. J. Water Resour. Water Eng. 2016, 27, 44–48. [Google Scholar]
- Chen, X.Q.; Liu, L.; Wei, Y.P. Variation trend of extreme climate events of the Yellow River Basin in 1961–2005 period. Yellow River 2011, 33, 3–5. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, C.R.; Zhang, Y.Q.; Yang, J.J.; Zheng, S.H. Variation of precipitation and temperature in Yellow River Basin during the last 50 years (1961-2010). Chin. J. Agrometeorol. 2012, 33, 475–480. [Google Scholar] [CrossRef]
- Yang, P.Y.; Zhang, Q.; Shi, P.J.; Gu, X.H.; Li, Q. Spatiotemporal distribution of precipitation extremes and related implications across the Yellow River Basin, China. J. Wuhan Univ. (Nat. Sci. Ed.) 2017, 63, 368–376. [Google Scholar] [CrossRef]
- Hyndman, R.; Fan, Y. Sample quantiles in statistical packages. Am. Stat. 1996, 50, 361–367. [Google Scholar]
- Zhang, X.; Hegel, G.; Zwiers, F. Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Clim. 2005, 18, 1641–1651. [Google Scholar] [CrossRef]
- Wang, X.L.; Wen, Q.H.; Wu, Y. Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteorol. Climatol. 2007, 46, 916–931. [Google Scholar] [CrossRef]
- Wang, X.L. Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal T. or F test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Karl, T.R.; Nicholls, N.; Ghazi, A. Weather and Climate Extremes; Springer: Dordrecht, The Netherlands, 1999; pp. 3–7. [Google Scholar]
- Qin, Y.; Liu, K. Advancement of applied studies of fractal theory in Geography. Prog. Geogr. 2003, 22, 426–436. [Google Scholar]
- Rybski, D.; Neumann, J. In Extremis: Disruptive Events and Trends in Climate and Hydrology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 202–213. ISBN 978-3-642-14863-7. [Google Scholar]
- Pan, Y.J.; Wang, Y.L.; Peng, J.; Shen, H.; Liu, X.Q. Precipitation change in middle and lower reaches of Hanjiang River: Based on wavelet analysis and R/S analysis. Geogr. Res. 2012, 31, 811–820. [Google Scholar]
- Feng, X.L.; Luo, L.C.; Feng, Z.L. Hurst index experiment on precipitation change trend and mutation of China in the near 50 years. Arid Land Geogr. 2009, 32, 859–866. [Google Scholar] [CrossRef]
- Feng, X.L.; Luo, L.C.; Qiu, L.L.; Feng, Z.L. Fractal research of rainy day changing trend from Tibetan Plateau to Eastern China. Geogr. Res. 2007, 26, 835–843. [Google Scholar]
- Feng, X.L.; Luo, L.C.; Qiu, L.L. R/S analysis on future climate change in the city of Chengdu. Resour. Environ. Yangtze Basin 2008, 17, 83–87. [Google Scholar]
- Feng, X.L.; Feng, Z.L.; Luo, L.C.; Qiu, L.L.; Liu, P. Fractal analysis of climate change and Hurst Index experiment in Tibetan Plateau in future. Arid Land Geogr. 2008, 31, 175–181. [Google Scholar] [CrossRef]
- Zuo, H.C.; Lyu, S.H.; Hu, Y.Q. Variations trend of yearly mean air temperature and precipitation in China in the last 50 years. Plateau Meteorol. 2004, 23, 238–244. [Google Scholar]
- Shen, J.J.; Ju, X.X.; Ma, L. Multiple scales analysis of the precipitation characteristics in Xi’an. Chin. Agric. Sci. Bull. 2015, 31, 257–263. [Google Scholar]
- Peng, S.S.; Piao, S.L.; Ciais, P. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 2013, 501, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Horton, B.J.; Philip, D.P.; Thomas, C.K.; Thomas, R.; Parker, D.E.; Salinger, M.; James, R.; Vyacheslav, P.; Neil, J.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef]
- Tan, J.G.; Piao, S.L.; Chen, A.P.; Zeng, Z.Z.; Ciais, P.; Janssens, I.A.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; Penuelas, J.; et al. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. Glob. Chang. Biol. 2015, 21, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Harvey, L.D.D. Warm days, hot nights. Nature 1995, 377, 15–16. [Google Scholar] [CrossRef]
- Wei, F.Y.; Cao, H. Detection of abrupt changes and trend prediction of the air temperature in China, the Northern Hemisphere and the Globe. Sci. Atmos. Sin. 1995, 19, 140–148. [Google Scholar]
- Ren, G.Y.; Guo, J.; Xu, M.Z.; Chu, Z.Y.; Zhang, L.; Zou, X.K.; Li, Q.X.; Liu, X.N. Climate changes of China’s mainland over the past half century. Acta Meteorol. Sin. 2005, 63, 942–956. [Google Scholar]
- Shi, Y.F.; Fan, J.H. Climatic warming and drying trend and its impact on water resources in Mid Latitude China. Adv. Water Sci. 1991, 2, 217–223. [Google Scholar]
- Leemans, R.; Eickhout, B. Another reason for concern: Regional and global impacts on ecosystems for different levels of climate change. Glob. Environ. Chang. 2004, 14, 219–228. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Wang, Q.; Zhang, Q.; Qing, J.Z.; Yang, Q.G.; Yuan, Z.P.; Liu, W.J.; Xu, J.F. Impact of climate warming and drying on food crops in northern China and the countermeasures. Acta Ecol. Sin. 2010, 30, 6278–6288. [Google Scholar]
- Zhang, Q.; Zhang, C.J.; Bai, H.Z.; Li, L.; Sun, L.D.; Liu, D.X.; Wang, J.S.; Zhao, H.Y. New development of climate change in Northwest China and its impact on Arid Environment. J. Arid Meteorol. 2010, 28, 1–7. [Google Scholar]
- Yang, X.; Yan, J.P. Study on the tendency of climate change and its effect on ecological environment in the SHANNXI-GANSU-NINGXIA Border Area. Adv. Earth Sci. 2003, 18, 127–132. [Google Scholar]
- Adger, W.N.; Brown, K. Land Use and the Causes of Global Warming; John Wiley & Sons: Chichester, UK, 1994. [Google Scholar]
- Dobson, A.P.; Bradshaw, A.D.; Baker, A.J.M. Hopes for the future: Restoration ecology and conservation biology. Science 1997, 277, 515–522. [Google Scholar] [CrossRef]
- Yang, Y.W.; Yu, Q.; Wang, J. Spatio-Temporal variations of principal climatic factors in North China and part of East China within past 40 years. Resour. Sci. 2004, 26, 45–50. [Google Scholar]
- Li, F.X.; Chen, D.; Tang, Q.H. Variations of hydro-meteorological variables in the Yellow River basin and their relationships with the East Asian summer monsoon. Adv. Water Sci. 2015, 26, 481–490. [Google Scholar] [CrossRef]
Grade | Hurst Index Range | Continuity Intensity | Grade | Hurst Index Range | Discontinuity Intensity |
---|---|---|---|---|---|
1 | 0.5 < H ≤ 0.55 | Very weak | −1 | 0.45 ≤ H < 0.5 | Very weak |
2 | 0.55 < H ≤ 0.65 | Relatively weak | −2 | 0.35 ≤ H < 0.45 | Relatively weak |
3 | 0.65 < H ≤ 0.75 | Relatively strong | −3 | 0.25 ≤ H < 0.35 | Relatively strong |
4 | 0.75 < H ≤ 0.80 | Strong | −4 | 0.2 ≤ H < 0.25 | Strong |
5 | 0.80 < H < 1 | Very strong | −5 | 0 < H < 0.2 | Very strong |
Season | Method | Maximum Temperature (°C) | Minimum Temperature (°C) | Average Temperature (°C) | Precipitation (mm) |
---|---|---|---|---|---|
Year | M–K | 0.26 | 0.36 | 0.28 | −4.40 |
Pettitt | 1992 | 1985 | 1985 | 1985 | |
Spring | M–K | 0.28 | 0.33 | 0.29 | −0.65 |
Pettitt | 1995 | 1995 | 1995 | 2008 | |
Summer | M–K | 0.12 | 0.25 | 0.14 | −0.49 |
Pettitt | 1995 | 1992 | 1992 | 1996 | |
Autumn | M–K | 0.26 | 0.32 | 0.26 | −0.45 |
Pettitt | 1985 | 1992 | 1985 | 1985 | |
Winter | M–K | 0.32 | 0.49 | 0.39 | 0.47 |
Pettitt | 1992 | 1985 | 1985 | 1984 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Xia, H.; Sun, J.; Wang, H.; Feng, G.; Qin, F. Spatial–Temporal Variability of Hydrothermal Climate Conditions in the Yellow River Basin from 1957 to 2015. Atmosphere 2018, 9, 433. https://doi.org/10.3390/atmos9110433
Ma L, Xia H, Sun J, Wang H, Feng G, Qin F. Spatial–Temporal Variability of Hydrothermal Climate Conditions in the Yellow River Basin from 1957 to 2015. Atmosphere. 2018; 9(11):433. https://doi.org/10.3390/atmos9110433
Chicago/Turabian StyleMa, Liqun, Haoming Xia, Jiulin Sun, Hao Wang, Gary Feng, and Fen Qin. 2018. "Spatial–Temporal Variability of Hydrothermal Climate Conditions in the Yellow River Basin from 1957 to 2015" Atmosphere 9, no. 11: 433. https://doi.org/10.3390/atmos9110433
APA StyleMa, L., Xia, H., Sun, J., Wang, H., Feng, G., & Qin, F. (2018). Spatial–Temporal Variability of Hydrothermal Climate Conditions in the Yellow River Basin from 1957 to 2015. Atmosphere, 9(11), 433. https://doi.org/10.3390/atmos9110433