Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA
Abstract
:1. Introduction
2. Methods
2.1. Geographic Location, Terrain, and Observed Winds
2.2. Classification of Gap Wind Events
2.3. Calculation of the Sea Level Pressure Gradient
2.4. Numerical Model Setup
3. Results and Discussion
3.1. Frequency and Characteristics of Gap Wind Events
3.2. Correlation with Sea Level Pressure Gradient
3.3. Numerical Model Results
3.3.1. Simulation of Synoptic-Scale Patterns
3.3.2. The 1.33 km Domain
3.3.3. Horizontal Grid Spacing and Terrain Representation
3.4. Gap Winds and Operational Modeling
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zardi, D.; Whiteman, C.D. Diurnal Mountain Wind Systems. In Mountain Weather Research and Forecasting; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; Chapter 2; pp. 35–119. [Google Scholar]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Butler, B.W.; Wagenbrenner, N.S.; Forthofer, J.M.; Lamb, B.K.; Shannon, K.S.; Finn, D.; Eckman, R.M.; Clawson, K.; Bradshaw, L.; Sopko, P.S.; et al. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon. Atmos. Chem. Phys. 2015, 15, 3785–3801. [Google Scholar] [CrossRef]
- Sharp, J.; Mass, C.F. Columbia Gorge Gap Winds: Their Climatological Influence and Synoptic Evolution. Weather Forecast. 2004, 19, 970–992. [Google Scholar] [CrossRef]
- Armi, L.; Mayr, G.J. Stratified flow across an alpine crest with a pass: Shallow and deep flows. Q. J. R. Meteorol. Soc. 2007, 133, 459–477. [Google Scholar] [CrossRef]
- Overland, J.E.; Walter, B.A. Gap winds in the Strait of Juan de Fuca. Mon. Weather Rev. 1981, 109, 2221–2233. [Google Scholar] [CrossRef]
- De Foy, B.; Clappier, A.; Molina, L.T.; Molina, M.J. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with synoptic flow. Atmos. Chem. Phys. 2006, 6, 1249–1265. [Google Scholar] [CrossRef]
- Xie, S.; Xu, H.; Kessler, W.S.; Nonaka, M. Air-sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Clim. 2005, 18, 5–20. [Google Scholar] [CrossRef]
- Gohm, A.; Mayr, G.J.; Fix, A.; Giez, A. On the onset of bora and the formation of rotors and jumps near a mountain gap. Q. J. R. Meteorol. Soc. 2008, 134, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Cramer, O.P. Frequency of dry east winds over the northwest Oregon and southwest Washington. In Pacific Northwest Forest and Range Experiment Station; Research Paper 24; USDA/Forest Service: Portland, OR, USA, 1957; p. 19. [Google Scholar]
- Graham, H.E. The Columbia Gorge wind funnel. Weatherwise 1953, 6, 104–107. [Google Scholar] [CrossRef]
- Eidenshank, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Brewer, M.C.; Mass, C.F.; Potter, B.E. The west coast thermal trough: Climatology and synoptic evolution. Mon. Weather Rev. 2012, 140, 3820–3843. [Google Scholar] [CrossRef]
- Brewer, M.C.; Mass, C.F.; Potter, B.E. The west coast thermal trough: Mesoscale evolution and sensitivity to terrain and surface fluxes. Mon. Weather Rev. 2013, 141, 2869–2896. [Google Scholar] [CrossRef]
- Berrisford, P.; Kallberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.J.; Poli, P.; Sato, H. Atmospheric conservation properties in ERA-Interim. Q. J. R. Meteorol. Soc. 2011, 137, 1381–1399. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jovic, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef]
- Wedam, G.B.; McMurdie, L.A.; Mass, C.F. Comparison of model forecast skill of sea level pressure along the east and west coasts of the United States. Weather Forecast. 2008, 24, 843–854. [Google Scholar] [CrossRef]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.; Koren, V.; Duan, Y.; Ek, M.; Betts, A. Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef]
- Thompson, G.R.; Rasmussen, R.M.; Manning, K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Weather Rev. 2004, 132, 519–542. [Google Scholar] [CrossRef]
- Kain, J. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogenous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 24, 163–187. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Mass, C.F.; Albright, M.; Ovens, D.; Steed, R.; Maclver, M.; Grimit, E.; Eckel, T.; Lamb, B.; Vaughan, J.; Westrick, K.; et al. Regional environmental prediction over the Pacific Northwest. Bull. Am. Meteorol. Soc. 2003, 40, 1353–1366. [Google Scholar] [CrossRef]
- Skamarock, W.C. Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Weather Rev. 2004, 132, 3019–3032. [Google Scholar] [CrossRef]
- Stauffer, D.R.; Seman, N.L. Multiscale four-dimensional data assimilation. J. Appl. Meteorol. 1994, 33, 416–434. [Google Scholar] [CrossRef]
- Alexander, C.R.; Weygandt, S.S.; Benjamin, S.G.; Smirnova, T.G.; Dowell, D.C.; Hofmann, P.; James, E.J.; Hu, M.; Lin, H.; Brown, M.J.; et al. Evaluation of High Resolution Rapid Refresh (HRRR) Model Changes and Forecasts during 2011. In Proceedings of the American Meteorological Society Annual Meeting, New Orleans, LA, USA, 22–26 January 2012. [Google Scholar]
- Mesinger, F.; Treadon, R.E. “Horizontal” reduction of pressure to sea level: Comparison against the NMC’s Shuell method. Mon. Weather Rev. 1995, 123, 59–68. [Google Scholar] [CrossRef]
- Stackpole. Revised Method of 1000 mb Height Computation in the PE Model; Technical Procedures Bulletin 57, NOAA/NWS; Stackpole: Mecklenicsburg, PA, USA, 1970; p. 6. [Google Scholar]
- Mesigner, F. “Horizontal” pressure reduction to sea level. In Proceedings of the International Tagung fur Alpine Meteorologie, Schweizerische Meteorologische Anstalt, Engelberg, Switzerland, 17–21 September 1990; pp. 31–35. [Google Scholar]
- Pauley, P.M. An example of uncertainty in sea level pressure reduction. Weather Forecast. 1998, 13, 833–850. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Miller, P.A. An alternative sea level pressure reduction and a statistical comparison of geostrophic wind estimates with observed surface winds. Mon. Weather Rev. 1990, 118, 2099–2116. [Google Scholar] [CrossRef]
Date | Average Direction (°) | Maximum Speed (m s−1) | Average Speed (m s−1) (0600 LT) | Average Speed (m s−1) (0900 LT) | Average Speed (m s−1) (1200 LT) | Pressure Gradient (Pa km−1) (0600 LT) |
---|---|---|---|---|---|---|
16 July 2011 | 150 | 10 | 0.7 | 5.6 | 1.8 | 1.0 |
17 July 2011 | 142 | 5.9 | 2.6 | 3.3 | 2.8 | 1.1 |
24 July 2011 | 141 | 9.8 | 4.1 | 6.7 | 5.3 | 1.2 |
30 July 2011 | 143 | 8.4 | 2.9 | 3.3 | 1.1 | 1.1 |
1 August 2011 | 153 | 6.3 | 3.6 | 3.2 | 2.8 | 0.2 |
2 August 2011 | 168 | 7.1 | 1.2 | 1.0 | 2.3 | 1.1 |
4 August 2011 | 156 | 11 | 1.4 | 4.6 | 1.8 | 0.6 |
5 August 2011 | 145 | 12 | 2.7 | 3.8 | 3.8 | 1.3 |
6 August 2011 | 144 | 7.8 | 1.3 | 3.5 | 3.2 | 0.7 |
13 August 2011 | 140 | 9.9 | 2.5 | 5.0 | 6.6 | 1.3 |
16 August 2011 | 144 | 6.5 | 1.5 | 3.1 | 3.2 | 0.7 |
17 August 2011 | 141 | 8.9 | 3.1 | 6.0 | 5.0 | 0.7 |
20 August 2011 | 141 | 5.9 | 2.1 | 2.8 | 2.8 | 0.8 |
21 August 2011 | 136 | 9.7 | 3.5 | 4.5 | 4.9 | 0.6 |
22 August 2011 | 137 | 10 | 4.2 | 6.3 | 4.6 | 0.9 |
24 August 2011 | 129 | 11 | 2.6 | 6.5 | 6.3 | 0.9 |
25 August 2011 | 164 | 7.8 | 3.3 | 1.1 | 2.0 | 0.6 |
26 August 2011 | 136 | 7.1 | 1.8 | 3.5 | 4.2 | 1.1 |
28 August 2011 | 126 | 7.1 | 1.9 | 3.1 | 5.0 | 1.2 |
29 August 2011 | 132 | 7.1 | 4.7 | 3.5 | 2.3 | 0.3 |
3 September2011 | 148 | 7.2 | 0.4 | 3.4 | 2.5 | 0.7 |
4 September 2011 | 131 | 11 | 4.1 | 6.3 | 6.4 | 1.4 |
5 September 2011 | 145 | 5.8 | 4.8 | 7.1 | 6.4 | 1.1 |
6 September 2011 | 156 | 4.6 | 1.0 | 3.3 | 3.3 | 0.8 |
7 September 2011 | 136 | 10 | 5.6 | 6.7 | 6.3 | 1.5 |
8 September 2011 | 137 | 11 | 6.1 | 6.5 | 6.3 | 1.8 |
9 September 2011 | 150 | 7.4 | 0.8 | 2.8 | 3.6 | 1.2 |
10 September 2011 | 150 | 6.7 | 4.5 | 6.3 | 4.4 | 1.6 |
11 September 2011 | 134 | 9.5 | 4.2 | 7.7 | 5.2 | 1.4 |
12 September 2011 | 140 | 8.9 | 3.4 | 4.8 | 4.7 | 1.5 |
13 September 2011 | 150 | 5.4 | 0.8 | 4.8 | 4.3 | 1.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagenbrenner, N.S.; Forthofer, J.M.; Gibson, C.; Indreland, A.; Lamb, B.K.; Butler, B.W. Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA. Atmosphere 2018, 9, 45. https://doi.org/10.3390/atmos9020045
Wagenbrenner NS, Forthofer JM, Gibson C, Indreland A, Lamb BK, Butler BW. Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA. Atmosphere. 2018; 9(2):45. https://doi.org/10.3390/atmos9020045
Chicago/Turabian StyleWagenbrenner, Natalie S., Jason M. Forthofer, Chris Gibson, Abby Indreland, Brian K. Lamb, and Bret W. Butler. 2018. "Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA" Atmosphere 9, no. 2: 45. https://doi.org/10.3390/atmos9020045
APA StyleWagenbrenner, N. S., Forthofer, J. M., Gibson, C., Indreland, A., Lamb, B. K., & Butler, B. W. (2018). Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA. Atmosphere, 9(2), 45. https://doi.org/10.3390/atmos9020045