Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia
Abstract
:1. Introduction
2. Methods
2.1. The Study Area
2.2. Regional Climate Model
2.3. Urban Canopy Model
2.4. Configuration of the Numerical Experiments and Timespan of the Study
2.5. The Definition of Urban-Induced Meteorological Effects and Their Magnitude in This Study
2.6. Observations Used for Model Verification
3. Results
3.1. Model Verification Based on Canopy-Layer Observations
3.2. Vertical Structure of the UHI
3.3. Urban Heat Plumes
3.4. Vertical Structure of the UDI/UMI
3.5. Urban Effects on Wind Speed and Mesoscale Circulation
3.6. Urban Effects on Precipitation and Cloudiness
4. Discussion
- (1)
- the variety of the urban–atmosphere feedbacks affecting the urban climate features;
- (2)
- the importance of further research on in-depth understanding of these feedbacks, which would foster better forecasts and more effective urban climate adaption; and
- (3)
- the significance of taking them into account in various weather and climate services and applications, including weather and air-quality forecasts, modeling studies in field of biometeorology and the climate change assessments for urban areas.
5. Conclusions
Supplementary Materials
Data Availability
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kislov, A.V.; Varentsov, M.I.; Gorlach, I.A.; Alekseeva, L.I. “Heat island” of the Moscow agglomeration and the urban-induced amplification of global warming. Moscow Univ. Vestnik Ser. 5 Geogr. 2017, 4, 12–19. (In Russian) [Google Scholar]
- Ren, G.Y.; Chu, Z.Y.; Chen, Z.H.; Ren, Y.Y. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Kalnay, E.; Ming, C. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Schatz, J.; Kucharik, C.J. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ. Res. Lett. 2015, 10, 94024. [Google Scholar] [CrossRef]
- De Ridder, K.; Maiheu, B.; Lauwaet, D.; Daglis, I.; Keramitsoglou, I.; Kourtidis, K.; Manunta, P.; Paganini, M. Urban Heat Island Intensification during Hot Spells—The Case of Paris during the Summer of 2003. Urban Sci. 2016, 1, 3. [Google Scholar] [CrossRef]
- Konstantinov, P.I.; Varentsov, M.I.; Malinina, E.P. Modeling of thermal comfort conditions inside the urban boundary layer during Moscow’s 2010 summer heat wave (case-study). Urban Clim. 2014, 10, 563–572. [Google Scholar] [CrossRef]
- Wouters, H.; De Ridder, K.; Poelmans, L.; Willems, P.; Brouwers, J.; Hosseinzadehtalaei, P.; Tabari, H.; Vanden Broucke, S.; van Lipzig, N.P.M.; Demuzere, M. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophys. Res. Lett. 2017, 44, 8997–9007. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Buechley, R.W.; Van Bruggen, J.; Truppi, L.E. Heat island = death island? Environ. Res. 1972, 5, 85–92. [Google Scholar] [CrossRef]
- Dousset, B.; Gourmelon, F.; Laaidi, K.; Zeghnoun, A.; Giraudet, E.; Bretin, P.; Mauri, E.; Vandentorren, S. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 2011, 31, 313–323. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: Abingdon-on-Thames, UK, 1987; ISBN 0203407210. [Google Scholar]
- Landsberg, H.E. The Urban Climate; Academic Press: Cambridge, MA, USA, 1972; ISBN 0124359604. [Google Scholar]
- Tzavali, A.; Paravantis, J.P.; Mihalakakou, G.; Fotiadi, A.; Stigka, E. Urban heat island intensity: A literature review. Fresenius Environ. Bull. 2015, 24, 4535–4554. [Google Scholar]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Kuttler, W.; Weber, S.; Schonnefeld, J.; Hesselschwerdt, A. Urban/rural atmospheric water vapour pressure differences and urban moisture excess in Krefeld, Germany. Int. J. Climatol. 2007, 27, 2005–2015. [Google Scholar] [CrossRef]
- Unger, J. Urban-rural air humidity differences in Szeged, Hungary. Int. J. Climatol. 1999, 19, 1509–1515. [Google Scholar] [CrossRef]
- Lokoshchenko, M.A. Urban Heat Island and Urban Dry Island in Moscow and Their Centennial Changes. J. Appl. Meteorol. Climatol. 2017, 56, 2729–2745. [Google Scholar] [CrossRef]
- Hage, K.D. Urban-Rural Humidity Differences. J. Appl. Meteorol. 1975, 14, 1277–1283. [Google Scholar] [CrossRef]
- Orlanski, L. A rational subdivision of scale for atmospheric processes. Bull. Am. Meteorol. Soc. 1975, 56, 527–530. [Google Scholar]
- Oke, T.R. The distinction between canopy and boundary layer urban heat islands. Atmosphere (Basel) 1976, 14, 268–277. [Google Scholar] [CrossRef]
- Bornstein, R.D. Observations of the Urban Heat Island Effect in New York City. J. Appl. Meteorol. 1968, 7, 575–582. [Google Scholar] [CrossRef]
- Lokoshchenko, M.A.; Korneva, I.A.; Kochin, A.V.; Dubovetsky, A.Z.; Novitsky, M.A.; Razin, P.Y. Vertical extension of the urban heat island above Moscow. Dokl. Earth Sci. 2016, 466, 70–74. [Google Scholar] [CrossRef]
- Wong, K.K.; Dirks, R.A. Mesoscale Perturbations on Airflow in the Urban Mixing Layer. J. Appl. Meteorol. 1978, 17, 677–688. [Google Scholar] [CrossRef]
- Lemonsu, A.; Masson, V. Simulation of a summer urban breeze over Paris. Bound.-Layer Meteorol. 2002, 104, 463–490. [Google Scholar] [CrossRef]
- Hidalgo, J.; Pigeon, G.; Masson, V. Urban-breeze circulation during the CAPITOUL experiment: Observational data analysis approach. Meteorol. Atmos. Phys. 2008, 102, 223–241. [Google Scholar] [CrossRef]
- Dixon, P.G.; Mote, T.L. Patterns and Causes of Atlanta’s Urban Heat Island-Initiated Precipitation. J. Appl. Meteorol. 2003, 42, 1273–1284. [Google Scholar] [CrossRef]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Han, J.Y.; Baik, J.J.; Lee, H. Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci. 2014, 50, 17–30. [Google Scholar] [CrossRef]
- Zhu, X.; Li, D.; Zhou, W.; Ni, G.; Cong, Z.; Sun, T. An idealized LES study of urban modification of moist convection. Q. J. R. Meteorol. Soc. 2017, 143, 3228–3243. [Google Scholar] [CrossRef]
- Varentsov, M.I.; Konstantinov, P.I.; Samsonov, T.E. Mesoscale modelling of the summer climate response of Moscow metropolitan area to urban expansion. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2017; Volume 96, p. 12009. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Wouters, H.; De Ridder, K.; Demuzere, M.; Lauwaet, D.; Van Lipzig, N.P.M. The diurnal evolution of the urban heat island of Paris: A model-based case study during Summer 2006. Atmos. Chem. Phys. 2013, 13, 8525–8541. [Google Scholar] [CrossRef] [Green Version]
- Sparks, N.; Toumi, R. Numerical Simulations of Daytime Temperature and Humidity Crossover Effects in London. Bound.-Layer Meteorol. 2015, 154, 101–117. [Google Scholar] [CrossRef]
- Khaikine, M.N.; Kuznetsova, I.N.; Kadygrov, E.N.; Miller, E.A. Investigation of temporal-spatial parameters of an urban heat island on the basis of passive microwave remote sensing. Theor. Appl. Climatol. 2006, 84, 161–169. [Google Scholar] [CrossRef]
- Gorlach, I.A.; Kislov, A.V.; Alekseeva, L.I. Experience of Learning of the Vertical Structure of Urban Heat Island Based on the Satellite Data. Izv. Atmos. Ocean Phys. 2017, 53, 37–46. [Google Scholar]
- Kislov, A.V. (Ed.) Klimat Moskvy v usloviyakh global’nogo potepleniya; Publishing House of Moscow University: Moscow, Russia, 2017; ISBN 978-5-19-011227-6. (In Russian) [Google Scholar]
- Kazakova, E.; Rozinkina, I. Testing of Snow Parameterization Schemes in COSMO-Ru: Analysis and Results. COSMO Newsl. 2011, 11, 41–51. [Google Scholar]
- Cox, W. Demographia World Urban Areas (World Agglomerations), 13th ed.; Wendell Cox Consultancy: Belleville, IL, USA, 2017. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Samsonov, T.; Trigub, K. Towards computation of urban local climate zones (LCZ) from openstreetmap data. In Proceedings of the 14th International Conference on GeoComputation, Leeds, UK, 4–7 September 2017; pp. 1–9. [Google Scholar]
- Lokoshchenko, M.A. Urban “heat island” in Moscow. Urban Clim. 2014, 10, 550–562. [Google Scholar] [CrossRef]
- Lee, D.O. Urban warming?—An analysis of recent trends in London’s heat island. Weather 1992, 47, 50–56. [Google Scholar] [CrossRef]
- Wilby, R.L. Past and projected trends in London’s urban heat island. Weather 2003, 58, 251–260. [Google Scholar] [CrossRef]
- Liu, W.; Ji, C.; Zhong, J.; Jiang, X.; Zheng, Z. Temporal characteristics of the Beijing urban heat island. Theor. Appl. Climatol. 2007, 87, 213–221. [Google Scholar] [CrossRef]
- Liu, W.; You, H.; Dou, J. Urban-rural humidity and temperature differences in the Beijing area. Theor. Appl. Climatol. 2009, 96, 201–207. [Google Scholar] [CrossRef]
- Yang, P.; Ren, G.; Liu, W. Spatial and temporal characteristics of Beijing urban heat island intensity. J. Appl. Meteorol. Climatol. 2013, 52, 1803–1816. [Google Scholar] [CrossRef]
- Longxun, C.; Wenqin, Z.; Xiuji, Z.; Zijiang, Z. Characteristics of the heat island effect in Shanghai and its possible mechanism. Adv. Atmos. Sci. 2003, 20, 991–1001. [Google Scholar] [CrossRef]
- Varentsov, M.I.; Samsonov, T.E.; Kislov, A.V.; Konstantinov, P.I. Simulations of Moscow agglomeration heat island within framework of regional climate model COSMO-CLM. Moscow Univ. Vestnik Ser. 5 Geogr. 2017, 6, 25–27. (In Russian) [Google Scholar]
- Böhm, U.; Kücken, M.; Ahrens, W.; Block, A.; Hauffe, D.; Keuler, K.; Rockel, B.; Will, A. CLM—The climate version of LM: Brief description and long-term applications. COSMO Newsl. 2006, 6, 225–235. [Google Scholar]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Von Storch, H.; Langenberg, H.; Feser, F. A Spectral Nudging Technique for Dynamical Downscaling Purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Varentsov, M.I.; Verezemskaya, P.S.; Zabolotskih, E.V.; Repina, I.A. Evaluation of the quality of polar low reconstruction using reanalysis and regional climate modelling. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 2016, 4, 168–191. (In Russian) [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M. The influence of spectral nudging on typhoon formation in regional climate models. Environ. Res. Lett. 2012, 7, 14024. [Google Scholar] [CrossRef]
- Cerenzia, I.; Tampieri, F.; Tesini, M.S. Diagnosis of Turbulence Schema in Stable Atmospheric Conditions and Sensitivity Tests. COSMO Newsl. 2014, 14, 28–36. [Google Scholar]
- Rossa, A.M.; Domenichini, F.; Szintai, B. Selected COSMO-2 verification results over North-eastern Italian Veneto. COSMO Newsl. 2012, 12, 64–71. [Google Scholar]
- Buzzi, M.; Rotach, M.W.; Raschendorfer, M.; Holtslag, A.A.M. Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteorol. Z. 2011, 20, 335–350. [Google Scholar] [CrossRef]
- Kislov, A.V.; Varentsov, M.I.; Tarasova, L.L. Role of spring soil moisture in the formation of large-scale droughts in the East European Plain in 2002 and 2010. Izv. Atmos. Ocean Phys. 2015, 51, 405–411. [Google Scholar] [CrossRef]
- Schulz, J.-P.; Vogel, G. An improved representation of the land surface temperature including the effects of vegetation in the COSMO model. Geophys. Res. Abstr. 2017, 19, 7896. [Google Scholar]
- Wouters, H.; Demuzere, M.; De Ridder, K.; Van Lipzig, N.P.M. The impact of impervious water-storage parametrization on urban climate modelling. Urban Clim. 2015, 11, 24–50. [Google Scholar] [CrossRef]
- Wouters, H.; Demuzere, M.; Blahak, U.; Fortuniak, K.; Maiheu, B.; Camps, J.; Tielemans, D.; van Lipzig, N.P.M. Efficient urban canopy parametrization for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian Summer. Geosci. Model Dev. 2016, 9, 3027–3054. [Google Scholar] [CrossRef]
- De Ridder, K.; Lauwaet, D.; Maiheu, B. UrbClim—A fast urban boundary layer climate model. Urban Clim. 2015, 12, 21–48. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Barlage, M.; Chen, F. Urban meteorological modeling using WRF: A sensitivity study. Int. J. Climatol. 2017, 37, 1885–1900. [Google Scholar] [CrossRef]
- Meng, C. The integrated urban land model. J. Adv. Model. Earth Syst. 2015, 7, 759–773. [Google Scholar] [CrossRef]
- Demuzere, M.; Coutts, A.M.; Göhler, M.; Broadbent, A.M.; Wouters, H.; van Lipzig, N.P.M.; Gebert, L. The implementation of biofiltration systems, rainwater tanks and urban irrigation in a single-layer urban canopy model. Urban Clim. 2014, 10, 148–170. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Masson, V. A physically based scheme for the urban energy budget in atmospheric models. Bound. Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Demuzere, M.; Harshan, S.; Järvi, L.; Roth, M.; Grimmond, C.S.B.; Masson, V.; Oleson, K.W.; Velasco, E.; Wouters, H. Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. Q. J. R. Meteorol. Soc. 2017, 143, 1581–1596. [Google Scholar] [CrossRef]
- Flanner, M.G. Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett. 2009, 36, L02801. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Samsonov, T.E.; Konstantinov, P.I.; Varentsov, M.I. Object-oriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Clim. 2015, 13, 122–139. [Google Scholar] [CrossRef]
- Stewart, I.D.; Kennedy, C.A. Metabolic heat production by human and animal populations in cities. Int. J. Biometeorol. 2017, 61, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Chubarova, N.E.; Nezval, E.I.; Belikov, I.B.; Gorbarenko, E.V.; Eremina, I.D.; Zhdanova, E.Y.; Korneva, I.A.; Konstantinov, P.I.; Lokoshchenko, M.A.; Skorokhod, A.I.; et al. Climatic and environmental characteristics of Moscow megalopolis according to the data of the Moscow State University Meteorological Observatory over 60 years. Russ. Meteorol. Hydrol. 2014, 39, 602–613. [Google Scholar] [CrossRef]
- Lee, R.L.; Olfe, D.B. Numerical calculations of temperature profiles over an urban heat island. Bound.-Layer Meteorol. 1974, 7, 39–52. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Kadygrov, E.N.; Pick, D.R. The potential for temperature retrieval from an angular-scanning single-channel microwave radiometer and some comparisons within situ observations. Meteorol. Appl. 1998, 5, 393–404. [Google Scholar] [CrossRef]
- Yushkov, V.P. What can be measured by the temperature profiler. Russ. Meteorol. Hydrol. 2014, 39, 838–846. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Kadygrov, E.N.; Kunitsyn, V.E.; Zakharov, V.I.; Semutnikova, E.G.; Karpov, A.V.; Kurbatov, G.A.; Miller, E.A.; Sitanskii, S.I. The Moscow heat island in the blocking anticyclone during summer 2010. Dokl. Earth Sci. 2014, 456, 736–740. [Google Scholar] [CrossRef]
- Varentsov, M.I.; Yushkov, V.P.; Miller, E.A.; Konstantinov, P.I. Vertical structure of the urban “heat island” based on the date of microwave remote sensing. In Dynamics of Wave and Excahge Prosesses in the Atmpshpere; Chketiani, O.G., Gorbunov, M.E., Kulichkov, S.N., Repina, I.A., Eds.; GEOS: Moscow, Russia, 2017; pp. 113–129. ISBN 978-5-89118-734-4. (In Russian) [Google Scholar]
- Clarke, J.F. Nocturnal Urban Boundary Layer over Cincinnati, Ohio. Mon. Weather Rev. 1969, 97, 582–589. [Google Scholar] [CrossRef]
- Bassett, R.; Cai, X.; Chapman, L.; Heaviside, C.; Thornes, J.E.; Muller, C.L.; Young, D.T.; Warren, E.L. Observations of urban heat island advection from a high-density monitoring network. Q. J. R. Meteorol. Soc. 2016, 142, 2434–2441. [Google Scholar] [CrossRef]
- Heaviside, C.; Cai, X.-M.; Vardoulakis, S. The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Q. J. R. Meteorol. Soc. 2015, 141, 1429–1441. [Google Scholar] [CrossRef]
- Bornstein, R.D.; Johnson, D.S. Urban-rural wind velocity differences. Atmos. Environ. 1977, 11, 597–604. [Google Scholar] [CrossRef]
- Lu, J.; Arya, S.P.; Snyder, W.H.; Lawson, R.E. A Laboratory Study of the Urban Heat Island in a Calm and Stably Stratified Environment. Part II: Velocity Field. J. Appl. Meteorol. 1997, 36, 1392–1402. [Google Scholar] [CrossRef]
- Kurbatskii, A.F.; Kurbatskaya, L.I. Turbulent circulation above the surface heat source in a stably stratified environment. Thermophys. Aeromech. 2016, 23, 677–692. [Google Scholar] [CrossRef]
- Lee, D.O. The influence of atmospheric stability and the urban heat island on urban-rural wind speed differences. Atmos. Environ. 1979, 13, 1175–1180. [Google Scholar] [CrossRef]
- Klimat Moskvy (Osobennosti klimata bol’shogo goroda); Dmitriev, A.A.; Bessonov, N.P. (Eds.) Gidrometeoizdat: Saint Petersburg, Russia, 1969. (In Russian) [Google Scholar]
- Stulov, E.A. Urban effects on summer precipitation in Moscow. Russ. Meteorol. Hydrol. 1993, 11, 34–41. [Google Scholar]
- Matveev, L.T. Influence of the City on Meteorological Regime (on Example of Moscow). Izv. Ross. Akad. Nauk. Ser. Geogr. 2007, 4, 97–102. (In Russian) [Google Scholar]
- Romanov, P. Urban influence on cloud cover estimated from satellite data. Atmos. Environ. 1999, 33, 4163–4172. [Google Scholar] [CrossRef]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Szymanowski, M.; Kryza, M. GIS-based techniques for urban heat island spatialization. Clim. Res. 2009, 38, 171–187. [Google Scholar] [CrossRef]
- Kislov, A.V.; Konstantinov, P.I. Detailed spatial modeling of temperature in Moscow. Russ. Meteorol. Hydrol. 2011, 36, 300–306. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J.; Khain, A.P. A Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation. J. Atmos. Sci. 2012, 69, 504–520. [Google Scholar] [CrossRef]
- Petrova, I.Y.; Heerwaarden, C.C.; Van Hohenegger, C.; Guichard, F. Regional co-variability of spatial and temporal soil moisture-precipitation coupling in North Africa: An observational perspective. Hydrol. Earth Syst. Sci. Discuss. 2017. [Google Scholar] [CrossRef]
- Guillod, B.P.; Orlowsky, B.; Miralles, D.G.; Teuling, A.J.; Seneviratne, S.I. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, C.M.; Gounou, A.; Guichard, F.; Harris, P.P.; Ellis, R.J.; Couvreux, F.; De Kauwe, M. Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci. 2011, 4, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.M.; De Jeu, R.A.M.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, B.; Vogel, H.; Bäumer, D.; Bangert, M.; Lundgren, K.; Rinke, R.; Stanelle, T. The comprehensive model system COSMO-ART—Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos. Chem. Phys. 2009, 9, 8661–8680. [Google Scholar] [CrossRef]
- Vil’fand, R.M.; Kirsanov, A.A.; Revokatova, A.P.; Rivin, G.S.; Surkova, G.V. Forecasting the transport and transformation of atmospheric pollutants with the COSMO-ART model. Russ. Meteorol. Hydrol. 2017, 42, 292–298. [Google Scholar] [CrossRef]
- Revokatova, A.P. A method of carbon monoxide emission forecast in Moscow. Russ. Meteorol. Hydrol. 2013, 38, 396–404. [Google Scholar] [CrossRef]
- Kusaka, H.; Suzuki-Parker, A.; Aoyagi, T.; Adachi, S.A.; Yamagata, Y. Assessment of RCM and urban scenarios uncertainties in the climate projections for August in the 2050s in Tokyo. Clim. Chang. 2016, 137, 427–438. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varentsov, M.; Wouters, H.; Platonov, V.; Konstantinov, P. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere 2018, 9, 50. https://doi.org/10.3390/atmos9020050
Varentsov M, Wouters H, Platonov V, Konstantinov P. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere. 2018; 9(2):50. https://doi.org/10.3390/atmos9020050
Chicago/Turabian StyleVarentsov, Mikhail, Hendrik Wouters, Vladimir Platonov, and Pavel Konstantinov. 2018. "Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia" Atmosphere 9, no. 2: 50. https://doi.org/10.3390/atmos9020050
APA StyleVarentsov, M., Wouters, H., Platonov, V., & Konstantinov, P. (2018). Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere, 9(2), 50. https://doi.org/10.3390/atmos9020050