Seasonal Changes of Extremes in Isolated and Mesoscale Precipitation for the Southeastern United States
Abstract
:1. Introduction
2. Data and Approach
3. Results
4. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Karl, T.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–242. [Google Scholar] [CrossRef]
- Emori, S.; Brown, S.J. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Trenberth, K. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.; Ingram, W. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Allan, R.; Soden, B. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.C.; Fu, C.; Shiu, C.J.; Chen, J.P.; Wu, F. Temperature dependence of global precipitation extremes. Geophys. Res. Lett. 2009, 36, L17702. [Google Scholar] [CrossRef]
- Trenberth, K. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim. Chang. 1999, 42, 327–339. [Google Scholar] [CrossRef]
- Kunkel, K.; Easterling, D.; Kristovich, D.; Gleason, B.; Stoecker, L.; Smith, R. Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett. 2010, 37, L24706. [Google Scholar] [CrossRef]
- Mock, C. Climatic controls and spatial variations of precipitation in the western United States. J. Clim. 1996, 9, 1111–1125. [Google Scholar] [CrossRef]
- Curtis, S.; Salahuddin, A.; Adler, R.; Huffman, G.; Gu, G.; Hong, Y. Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J. Hydrometeorol. 2007, 8, 678–689. [Google Scholar] [CrossRef]
- Gadgil, S.; Vinayachandran, P.; Francis, P.; Gadgil, S. Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Boers, N.; Bookhagen, B.; Marwan, N.; Kurths, J.; Marengo, J. Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System. Geophys. Res. Lett. 2013, 40, 4386–4392. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zipser, E.; Chen, Y.L.; Liu, C.; Liou, Y.C.; Lee, W.C.; Jou, B.J. An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Weather Rev. 2012, 140, 2555–2574. [Google Scholar] [CrossRef]
- Mapes, B.; Warner, T.; Xu, M.; Negri, A. Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Weather Rev. 2003, 131, 799–812. [Google Scholar] [CrossRef]
- Ralph, F.M.; Dettinger, M. Historical and national perspectives on extreme west coast precipitation associated with atmospheric rivers during December 2010. Bull. Am. Meteorol. Soc. 2012, 93, 783–790. [Google Scholar] [CrossRef]
- Hohenegger, C.; Brockhaus, P.; Bretherton, C.; Schär, C. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J. Clim. 2009, 22, 5003–5020. [Google Scholar] [CrossRef]
- Laing, A.; Fritsch, J.; Negri, A. Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: Estimates from geostationary infrared and passive microwave data. J. Appl. Meteorol. Climatol. 1999, 38, 957–964. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Zipser, E.J. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Clim. 2003, 16, 1456–1475. [Google Scholar] [CrossRef]
- Schiermeier, Q. The real holes in climate science. Nature 2010, 463, 284–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, S.-C.; Ganguly, A. Intensity, duration and frequency of precipitation extremes under 21st century warming scenarios. J. Geophys. Res. 2011, 116, D16119. [Google Scholar] [CrossRef]
- Hourdin, F.; Grandpeix, J.-Y.; Rio, C.; Bony, S.; Jam, A.; Cheruy, F.; Rochetin, N.; Fairhead, L.; Idelkadi, A.; Musat, I.; et al. LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim. Dyn. 2013, 40, 2193–2222. [Google Scholar] [CrossRef]
- O’Gorman, P.; Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st century climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 14773–14777. [Google Scholar] [CrossRef] [PubMed]
- Houze, R. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 1989, 115, 425–461. [Google Scholar] [CrossRef]
- Curtis, S. Developing a climatology of the South’s ‘other’ storm season: ENSO impacts on winter extratropical cyclogenesis. Southeast. Geogr. 2006, 46, 231–244. [Google Scholar] [CrossRef]
- Nieto Ferreira, R.; Hall, L.; Rickenbach, T. A climatology of the structure, evolution and propagation of midlatitude cyclones in the southeast United States. J. Clim. 2013, 26, 8406–8421. [Google Scholar] [CrossRef]
- Larson, J.; Zhou, Y.; Higgins, R.W. Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. J. Clim. 2005, 18, 1247–1262. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Grundstein, A.; Mote, T. Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett. 2007, 34, L23810. [Google Scholar] [CrossRef]
- Koch, S.; Ray, C. Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Weather Forecast. 1997, 12, 56–77. [Google Scholar] [CrossRef]
- Parker, M.D.; Ahijevych, D.A. Convective episodes in the east-central United States. Mon. Weather Rev. 2007, 135, 3707–3727. [Google Scholar] [CrossRef]
- Winkler, J.A.; Skeeter, B.R.; Yamamoto, P.D. Seasonal variations in the diurnal characteristics of heavy hourly precipitation across the United States. Mon. Weather Rev. 1988, 116, 1641–1658. [Google Scholar] [CrossRef]
- Leary, C.; Houze, R. The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci. 1979, 36, 437–457. [Google Scholar] [CrossRef]
- Wallace, J. Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Weather Rev. 1975, 103, 406–419. [Google Scholar] [CrossRef]
- Carbone, R.; Tuttle, J. Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Clim. 2008, 21, 4132–4146. [Google Scholar] [CrossRef]
- Rickenbach, T.M.; Nieto-Ferreira, R.; Zarzar, C.; Nelson, B. A seasonal and diurnal climatology of precipitation organization in the southeastern United States. Q. J. R. Meteorol. Soc. 2015, 141, 1938–1956. [Google Scholar] [CrossRef]
- Rickenbach, T.M.; Rutledge, S.A. Convection in TOGA COARE: Horizontal scale, morphology and rainfall production. J. Atmos. Sci. 1998, 55, 2715–2729. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Zipser, E.J.; Cecil, D.J. A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Clim. 2000, 13, 4087–4106. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A. Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Weather Rev. 2006, 134, 2702–2721. [Google Scholar] [CrossRef]
- Rickenbach, T.M.; Nieto-Ferreira, R.; Barnhill, R.; Nesbitt, S. Regional contrast of mesoscale convective system structure prior to and during monsoon onset across South America. J. Clim. 2011, 24, 3753–3763. [Google Scholar] [CrossRef]
- Rickenbach, T.M.; Nieto-Ferreira, R.; Barnhill, R.; Nesbitt, S. Seasonal and regional differences in the rainfall and intensity of isolated convection over South America. Int. J. Climatol. 2013, 33, 2002–2007. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E. Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos. 2013, 118, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.D.; Carbone, R.E. A preliminary morphology of precipitation systems in tropical northern Australia. Q. J. R. Meteorol. Soc. 1992, 118, 283–326. [Google Scholar] [CrossRef]
- Miller, P.; Mote, T. A climatology of weakly forced and pulse thunderstorms in the Southeast United States. J. Appl. Meteorol. Climatol. 2017, 56, 3017–3033. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Vasiloff, S.; Langston, C.; Kaney, B.; Arthur, A.; Van Cooten, S.; Kelleher, K.; Kitzmiller, D.F.; Ding, F. National Mosaic and QPE (NMQ) System: description, results, and future plans. Bull. Am. Meteorol. Soc. 2011, 92, 1321–1338. [Google Scholar] [CrossRef]
- Steiner, M.; Houze, R.; Yuter, S. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Marks, D.; Wolff, D.; Silberstein, D.; Tokay, A.; Pippitt, J.; Wang, J. Availability of high-quality TRMM ground validation data from Kwajalein, RMI: A practical application of the relative calibration adjustment technique. J. Atmos. Ocean. Technol. 2009, 26, 413–429. [Google Scholar] [CrossRef]
- Fabry, F.; Austin, G.; Tees, D. The accuracy of rainfall estimates by radar as a function of range. Q. J. R. Meteorol. Soc. 1992, 118, 435–453. [Google Scholar] [CrossRef]
- Medlin, J.; Kimball, S.; Blackwell, K. Radar and rain gauge analysis of the extreme rainfall during Hurricane Danny’s (1997) landfall. Mon. Weather Rev, 2007, 135. [Google Scholar] [CrossRef]
- Maddox, R. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Laing, A.; Fritsch, J. The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc. 1997, 123, 389–405. [Google Scholar] [CrossRef]
- Debbage, N.; Miller, P.; Poore, S.; Morano, T.; Mote, T.; Shepherd, J.M. A climatology of atmospheric river interactions with the southeastern United States coastline. Int. J. Climatol. 2017, 37, 4077–4091. [Google Scholar] [CrossRef]
- Becker, T.; Bretherton, C.; Hohenegger, C.; Stevens, B. Estimating bulk entrainment with unaggregated and aggregated convection. Geophys. Res. Lett. 2018, 45, 455–462. [Google Scholar] [CrossRef]
SPRING (MAM) | SUMMER (JJA) | |
---|---|---|
IPF | 0.41 × 107 | 1.42 × 107 |
MPF | 1.77 × 107 | 2.25 × 107 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rickenbach, T. Seasonal Changes of Extremes in Isolated and Mesoscale Precipitation for the Southeastern United States. Atmosphere 2018, 9, 309. https://doi.org/10.3390/atmos9080309
Rickenbach T. Seasonal Changes of Extremes in Isolated and Mesoscale Precipitation for the Southeastern United States. Atmosphere. 2018; 9(8):309. https://doi.org/10.3390/atmos9080309
Chicago/Turabian StyleRickenbach, Thomas. 2018. "Seasonal Changes of Extremes in Isolated and Mesoscale Precipitation for the Southeastern United States" Atmosphere 9, no. 8: 309. https://doi.org/10.3390/atmos9080309
APA StyleRickenbach, T. (2018). Seasonal Changes of Extremes in Isolated and Mesoscale Precipitation for the Southeastern United States. Atmosphere, 9(8), 309. https://doi.org/10.3390/atmos9080309