The Efficiency and Reliability of Pollutant Removal in a Hybrid Constructed Wetland with Common Reed, Manna Grass, and Virginia Mallow
Abstract
:1. Introduction
2. Material and Methods
2.1. Characteristics of the Experimental Facility
2.2. Analytical Methods
2.3. Meteorological Conditions
2.4. Statistical Analysis
3. Results and Discussion
3.1. Composition of Treated Wastewater and the Efficiency of Pollutant Removal
3.2. Reliability of Pollutants Removal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Obarska-Pempkowiak, H.; Kołecka, K.; Gajewska, M.; Wojciechowska, E.; Ostojski, A. Sustainable wastewater management on the example of rural areas. Rocznik Ochrona Środowiska 2015, 17, 585–602. (In Polish) [Google Scholar]
- Pawełek, J.; Bugajski, P. The development of household wastewater treatment plants in Poland—Advantages and disadvantages. Acta Scientiarum Polonorum Formatio Circumiectus 2017, 16, 3–14. (In Polish) [Google Scholar] [CrossRef]
- Mikosz, J.; Mucha, Z. Validation of Design Assumptions for Small Wastewater Treatment Plant Modernization in Line with New Interpretation of Legal Requirements. Ochr. Srod. 2014, 36, 45–49. (In Polish) [Google Scholar]
- Jóźwiakowski, K.; Mucha, Z.; Generowicz, A.; Baran, S.; Bielińska, J.; Wójcik, W. The use of multi-criteria analysis for selection of technology for a household WWTP compatible with sustainable development. Arch. Environ. Prot. 2015, 3, 76–82. [Google Scholar] [CrossRef]
- GUS. Municipal Infrastructure in 2016; Główny Urząd Statystyczny: Warszawa, Poland, 2017. (In Polish) [Google Scholar]
- Wu, H.; Zhang, J.; Li, C.; Fan, J.; Zou, Y. Mass balance study on phosphorus removal in constructed wetland microcosms treating polluted river water. CLEAN Soil Air Water 2013, 41, 844–850. [Google Scholar] [CrossRef]
- Marzec, M. Reliability of removal of selected pollutants in different technological solutions of household wastewater treatment plants. J. Water Land Dev. 2017, 35, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Jóźwiakowski, K.; Bugajski, P.; Kurek, K.; Fátima Nunes de Carvalho, M.; Adelaide, M.; Almeida, A.; Siwiec, T.; Borowski, G.; Czekała, W.; Dach, J.; et al. The efficiency and technological reliability of biogenic compounds removal during long-term operation of a one-stage subsurface horizontal flow constructed wetland. Sep. Purif. Technol. 2018, 202, 216–226. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, U.N.; Tripathi, R.D.; Singh, N.K.; Upadhyay, A.K.; Dwivedi, S.; Shukla, M.K.; Mallick, S.; Singh, S.N.; Nautiyal, C.S. Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresour. Technol. 2013, 148, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.C.; DeLaune, R.D.; Park, W.Y.; Lim, J.S.; Seo, J.Y.; Lee, D.J.; Cho, J.S.; Heo, J.S. Evaluation of a hybrid constructed wetland for treating domestic sewage from individual housing units surrounding agricultural villages in South Korea. J. Environ. Monit. 2009, 11, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Masi, F.; Martinuzzi, N. Constructed wetlands for the Mediterranean countries: Hybrid systems for water reuse and sustainable sanitation. Desalination 2007, 215, 44–55. [Google Scholar] [CrossRef]
- Gajewska, M.; Obarska-Pempkowiak, H. 20 years of experience of hybrid constructed wetlands exploitation in Poland. Rocznik Ochrony Środowiska 2009, 11, 875–888. (In Polish) [Google Scholar]
- Vymazal, J.; Kröpfelová, L. Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Sci. Total Environ. 2009, 407, 3911–3922. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Mojiri, A.; Tajuddin, R.M.; Ahmad, Z.; Ziyang, L.; Aziz, H.A.; Amin, N.M. Chromium(VI) and cadmium removal from aqueous solutions using the BAZLSC/cockle shell constructed wetland system: Optimization with RSM. Int. J. Environ. Sci. Technol. 2018, 15, 1949–1956. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2009; ISBN 9781420012514. [Google Scholar]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.; Wu, S.; Huang, X.; Zhang, Y.; Dong, R. How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control. Bioresour. Technol. 2014, 169, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Jóźwiakowski, K.; Goral, R.; Perehubka, A.; Jakubowski, S.; Marzec, M.; Pytka, A.; Gizińska, M.; Kowalczyk-Juśko, A.; Szpakowski, G.; Muzyka, L.; et al. The Construction Project of Hybrid Household Wastewater Treatment Plant in Popkowice (Urzędów Commune); Manuscript, Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, R-G Projekt: Lublin, Poland, 2013. (In Polish) [Google Scholar]
- Regulation of the Minister of Environment of November 18, 2014 laying down conditions for the introduction of sewage into water or soil and substances particularly harmful to the aquatic environments (No 2014 Item 1800). Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20140001800/O/D20141800.pdf (accessed on 5 July 2018). (In Polish)
- Water and Sewage—Sampling—General Provision and Scope of the Standard; Polski Komitet Normalizacji, Miar i Jakości: Warszawa, Poland, 1975. (In Polish)
- Water Quality—Sampling—Guidance on Sampling Techniques; Polski Komitet Normalizacyjny: Warszawa, Poland, 1999. (In Polish)
- Water Quality—Determination of Biochemical Oxygen Demand after n Days (BOD)—Part 1: Dilution and Vaccination Method with the Addition of Allythiourea; Polski Komitet Normalizacyjny: Warszawa, Poland, 2002. (In Polish)
- Water Quality—Determination of the Chemical Oxygen Demand Index (ST-COD)—Small-Scale Sealed-Tube Method; Polski Komitet Normalizacyjny: Warszawa, Poland, 2005. (In Polish)
- Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method; Polski Komitet Normalizacyjny: Warszawa, Poland, 2006. (In Polish)
- Determination of Total Nitrogen by a Test Spectrometric Method; Wydawnictwa Normalizacyjne: Warszawa, Poland, 2013. (In Polish)
- Water Quality—Determination of Suspended Solids—Method by Filtration trough Filters; Polski Komitet Normalizacyjny: Warszawa, Poland, 2007. (In Polish)
- Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample; Polski Komitet Normalizacyjny: Warszawa, Poland, 2017. (In Polish)
- Institute of Meteorology and Water Management. Average Monthly Air Temperatures Monthly Rainfall for the Station in Radawiec near Lublin. 2018. Available online: https://dane.imgw.pl/data/dane_pomiarowo_obserwacyjne/ (accessed on 5 August 2018). (In Polish).
- Bugajski, P.; Wałęga, A.; Kaczor, G. Application of the Weibull reliability analysis of haousehold sewage treatment plant. Gaz Woda i Technika Sanitarna 2012, 2, 56–58. (In Polish) [Google Scholar]
- Bugajski, P. Analysis of reliability of the treatment plant Bioblok PS-50 using the method of Weibull. Infrastruct. Ecol. Rural Areas 2014, 2, 667–677. [Google Scholar]
- Jucherski, A.; Nastawny, M.; Walczowski, A.; Jóźwiakowski, K.; Gajewska, M. Assessment of the technological reliability of a hybrid constructed wetland for wastewater treatment in a mountain eco-tourist farm in Poland. Wat. Sci. Technol. 2017, 75, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Dodson, B. Weibull Analysis; ASQV Quality Press: Milwaukee, WI, USA, 1994; ISBN 087389295X/978-0873892957. [Google Scholar]
- Bugajski, P.; Bergel, T. Values of selected concentrations of pollutants in domestic sewage exiting the countryside. Gaz Woda i Technika Sanitarna 2008, 9, 28–29. (In Polish) [Google Scholar]
- Gajewska, M.; Obarska-Pempkowiak, H. Efficiency of pollutant removal by five multistage constructed wetlands in a temperate climate. Environ. Prot. Eng. 2011, 37, 27–36. [Google Scholar]
- Jóźwiakowski, K.; Bugajski, P.; Mucha, Z.; Wójcik, W.; Jucherski, A.; Nastawny, M.; Siwiec, T.; Gajewska, M.; Mazur, A.; Obroślak, R. Reliability and efficiency of pollution removal during long-term operation of a one-stage constructed wetland system with horizontal flow. Sep. Purif. Technol. 2017, 187, 60–66. [Google Scholar] [CrossRef]
- Heidrich, Z.; Kalenik, M.; Podedworna, J.; Stańko, G. Rural Sanitation; Wyd. Seidel-Przywecki: Warszawa, Poland, 2008; ISBN 978-83-60956-04-5. (In Polish) [Google Scholar]
- Krzanowski, S.; Jucherski, A.; Wałęga, A. Influence of season on technological of reliability of multi-degrees plant-ground adjacent of sewage treatment. Infrastruct. Ecol. Rural Areas 2005, 1, 37–55. (In Polish) [Google Scholar]
- Obarska-Pempkowiak, H.; Gajewska, M.; Wojciechowska, E. Constructed Wetlands to Water and Wastewater Treatment; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2010; pp. 35–40. (In Polish) [Google Scholar]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.K.; Inoue, T.; Kato, K.; Ietsugu, H.; Tomita, K.; Nagasawa, T. Potential of hybrid constructed wetland system in treating milking parlor wastewater under cold climatic conditions in northern Hokkaido, Japan. In Proceedings of the 12th International Conference on Wetland Systems for Water Pollution Control, Venice, Italy, 4–8 October 2010; pp. 929–938. [Google Scholar]
- Gajewska, M.; Obarska-Pempkowiak, H.; Kopeć, Ł. Operation of small wastewater treatment facilities in a scattered settlement. Rocznik Ochrona Środowiska 2011, 13, 207–225. [Google Scholar]
- Haberl, R.; Perfler, R.; Mayer, H. Constructed wetlands in Europe. Wat. Sci. Technol. 1995, 32, 305–315. [Google Scholar] [CrossRef]
- Headley, T.R.; Herity, E.; Davison, L. Treatment at different depths and vertical mixing within a 1-m deep horizontal subsurface flow wetland. Ecol. Eng. 2005, 25, 567–582. [Google Scholar] [CrossRef]
- Ong, S.A.; Uchiyama, K.; Inadama, D.; Ishida, Y.; Yamagiwa, K. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour. Technol. 2015, 101, 7239–7244. [Google Scholar] [CrossRef] [PubMed]
- Gervin, L.; Brix, H. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system. Wat. Sci. Technol. 2001, 44, 171–176. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, J.; Wu, J.; Xie, H.; Zhang, B. Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands: A microcosm experiment. Desalination 2010, 262, 202–208. [Google Scholar] [CrossRef]
- Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.A.; Moormann, H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.; Liu, Y.; Shen, Y.; Liu, H.; Xiong, Y. Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination 2010, 250, 915–920. [Google Scholar] [CrossRef] [Green Version]
- Jucherski, A.; Walczowski, A. Influence of selected macrophytes on sewage treatment effectiveness in the slope soiel-vegetation filtration beds. Probl. Agric. Eng. 2012, 1, 115–124. (In Polish) [Google Scholar]
- Klimont, K.; Bulińska-Radomska, Z. The possibility of using Virginia mallow plant (Sida Hermaphrodita Rusby) to reclamation of post-borehole Sulphur exploitation terrains. Probl. Agric. Eng. 2013, 1, 125–132. (In Polish) [Google Scholar]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total. Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Rustige, H.; Nolde, E. Nitrogen elimination from landfill leachates using an extra carbon source in subsurface flow constructed wetlands. Wat. Sci. Technol. 2007, 56, 25–133. [Google Scholar] [CrossRef]
- Songliu, L.; Hongying, H.; Yingxue, S.; Jia, Y. Effect of carbon source on the denitrification in constructed wetlands. J. Environ. Sci. 2009, 21, 1036–1043. [Google Scholar]
- Zhao, Y.J.; Hui, Z.H.; Chao, X.; Nie, E.; Li, H.J.; He, J.; Zheng, Z. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol. Eng. 2011, 37, 1546–1554. [Google Scholar] [CrossRef]
- Bulc, T.G. Long term performance of a constructed wetland for landfill leachate treatment. Ecol. Eng. 2006, 26, 365–374. [Google Scholar] [CrossRef]
- Greenway, M.; Woolley, A. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland, Cairns, Australia. Water Sci. Technol. 2001, 44, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, J.; Wei, R.; Liang, S.; Li, C.; Xie, H. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes. Environ. Sci. Pollut. Res. 2013, 20, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Staniszewski, R.; Szoszkiewicz, J.; Tomoń, M. The Role of Selected Plants in Limitation of Freshwater Trophy with Emphasis on Salvinia natans (L.) All. Pol. J. Environ. Stud. 2004, 13 (Suppl. 1), 67–69. [Google Scholar]
- Wesołowski, P.; Brysiewicz, A. The ability to onshore rushes in mid-field ponds to accumulate macro and micronutrients. Water-Environ.-Rural Areas 2014, 14, 111–119. [Google Scholar]
- Vymazal, J. Removal of phosphorus in constructed wetlands with horizontal sub-surface flow in the Czech Republic. Water Air Soil Pollut. 2004, 4, 657–670. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresour. Technol. 2013, 128, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xu, J.; Wu, J.; Muhammad, A. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere 2006, 63, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Andraka, D.; Dzienis, L. Required reliability level of wastewater treatment plants according to European and Polish regulations. Zeszyty Naukowe Politechniki Białostockiej. Ser. Inżynieria Środowiska 2003, 16, 24–28. (In Polish) [Google Scholar]
- Jóźwiakowski, K. Studies on the efficiency of sewage treatment in chosen constructed wetland systems. Infrastruct. Ecol. Rural Areas 2012, 1, 232. (In Polish) [Google Scholar]
- Wałęga, A.; Miernik, W.; Kozień, T. The efficiency of a domestic sewage treatment plant type RetroFAST. Przem. Chem. 2008, 87, 210–212. (In Polish) [Google Scholar]
- Bugajski, P.; Almeida Araujo, M.A.; Kurek, K. Reliability of sewage treatment plants processing sewage from school buildings located in non-urban areas. Infrastruct. Ecol. Rural Areas 2016, VI/3, 1547–1557. (In Polish) [Google Scholar]
- Zieliński, M. An Expert Study of Water-Related and Legal Aspects of Discharge of Treated Wastewater from a Domestic Wastewater Treatment Plant into the River Urzędówka at 12+662 km; Biuro Projektowe “SKALA”: Włodawa, Poland, 2011. (In Polish) [Google Scholar]
Parameters | Statistics Indicators | ||||||
---|---|---|---|---|---|---|---|
Average | Median | Min | Max | SD | Cv | ||
Dissolved oxygen (mg O2/L) | S1 | 1.05 | 0.83 | 0.09 | 4.28 | 1.01 | 96.09 |
S2 | 4.69 | 4.93 | 1.32 | 7.16 | 1.86 | 39.68 | |
S3 | 5.10 | 4.95 | 0.81 | 9.94 | 2.57 | 50.41 | |
S4 | 5.42 | 5.17 | 2.45 | 9.94 | 1.83 | 33.84 | |
BOD5 (mg O2/L) | S1 | 284.0 | 283.3 | 52.0 | 637.0 | 157.60 | 55.49 |
S2 | 18.2 | 6.4 | 1.4 | 55.2 | 19.27 | 105.79 | |
S3 | 10.2 | 5.2 | 0.2 | 45.0 | 11.57 | 113.14 | |
S4 | 2.9 | 2.4 | 0.2 | 8.0 | 2.29 | 78.79 | |
COD (mg O2/L) | S1 | 588.4 | 550.0 | 210.0 | 1366.0 | 290.33 | 49.34 |
S2 | 35.5 | 28.5 | 9.0 | 97.0 | 25.18 | 70.92 | |
S3 | 32.8 | 20.0 | 4.0 | 160.0 | 39.06 | 119.04 | |
S4 | 11.8 | 11.5 | 1.0 | 26.0 | 7.97 | 67.45 | |
TSS (mg/L) | S1 | 143.4 | 116.7 | 20.0 | 528.0 | 126.20 | 88.00 |
S2 | 40.9 | 32.2 | 9.1 | 188.0 | 41.34 | 101.06 | |
S3 | 22.4 | 19.1 | 6.4 | 89.3 | 19.15 | 85.36 | |
S4 | 11.3 | 10.3 | 3.7 | 46.7 | 10.04 | 88.80 | |
TN (mg/L) | S1 | 84.9 | 83.0 | 38.0 | 135.0 | 29.83 | 35.15 |
S2 | 52.9 | 48.0 | 16.0 | 108.0 | 25.19 | 47.64 | |
S3 | 39.9 | 45.0 | 8.5 | 76.0 | 20.83 | 52.20 | |
S4 | 11.5 | 8.3 | 0.9 | 28.0 | 9.36 | 81.72 | |
Ammonium nitrogen (mg/L) | S1 | 76.0 | 72.5 | 29.0 | 118.0 | 29.04 | 38.21 |
S2 | 6.45 | 4.58 | 0.22 | 22.20 | 6.81 | 105.63 | |
S3 | 6.96 | 5.40 | 0.21 | 21.80 | 6.76 | 97.11 | |
S4 | 2.79 | 1.07 | 0.03 | 12.10 | 3.61 | 129.50 | |
Nitrate nitrogen (mg/L) | S1 | 0.99 | 0.32 | 0.03 | 11.05 | 2.69 | 271.18 |
S2 | 18.55 | 15.76 | 0.197 | 46.83 | 16.48 | 88.81 | |
S3 | 12.09 | 7.94 | 0.01 | 33.88 | 11.00 | 91.03 | |
S4 | 1.84 | 1.14 | 0.06 | 9.75 | 2.48 | 134.87 | |
Nitrite nitrogen (mg/L) | S1 | 0.11 | 0.09 | 0.02 | 0.27 | 0.08 | 72.29 |
S2 | 0.29 | 0.15 | 0.01 | 1.22 | 0.34 | 117.49 | |
S3 | 0.18 | 0.13 | 0.01 | 0.93 | 0.24 | 131.08 | |
S4 | 0.18 | 0.03 | 0.01 | 1.91 | 0.47 | 265.16 | |
TP (mg/L) | S1 | 13.6 | 12.5 | 4.7 | 38.0 | 7.40 | 54.33 |
S2 | 5.30 | 5.33 | 0.63 | 10.20 | 2.72 | 51.20 | |
S3 | 4.33 | 4.44 | 0.40 | 11.40 | 2.50 | 57.79 | |
S4 | 0.53 | 0.29 | 0.06 | 2.90 | 0.71 | 134.72 |
Relationship | Recommended Value [40] | Values in the Analyzed Object |
---|---|---|
COD:BOD5 | ≤2.2 | 2.1 |
BOD5:TN | ≥4.0 | 3.3 |
BOD5:TP | ≥25 | 20.9 |
Parameters | Efficiency (%) | |||
---|---|---|---|---|
VF-IA | VF-IB | HF | VF-HF | |
BOD5 | 93.6 | 96.4 | 87.9 | 99.0 |
COD | 94.0 | 94.4 | 50.4 | 98.0 |
TSS | 71.5 | 84.4 | 62.2 | 92.1 |
TN | 37.7 | 53.0 | 73.0 | 86.5 |
TP | 61.0 | 68.2 | 86.9 | 96.1 |
Parameter | Parameters of Weibull Distribution | Hollander-Proschan Goodness-of-Fit Test | |||
---|---|---|---|---|---|
Location | Shape | Scale | Stat | p | |
BOD5 | 0.0409 | 1.2736 | 3.1000 | 0.0172 | 0.9863 |
COD | −0.2000 | 1.5536 | 13.0000 | −0.1397 | 0.8889 |
TSS | 3.5909 | 1.4033 | 12.0000 | 0.2348 | 0.8144 |
TN | 0.5667 | 1.1600 | 12.0000 | −0.0481 | 0.9616 |
TP | 0.0530 | 0.9496 | 0.5100 | 0.2972 | 0.7663 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzec, M.; Jóźwiakowski, K.; Dębska, A.; Gizińska-Górna, M.; Pytka-Woszczyło, A.; Kowalczyk-Juśko, A.; Listosz, A. The Efficiency and Reliability of Pollutant Removal in a Hybrid Constructed Wetland with Common Reed, Manna Grass, and Virginia Mallow. Water 2018, 10, 1445. https://doi.org/10.3390/w10101445
Marzec M, Jóźwiakowski K, Dębska A, Gizińska-Górna M, Pytka-Woszczyło A, Kowalczyk-Juśko A, Listosz A. The Efficiency and Reliability of Pollutant Removal in a Hybrid Constructed Wetland with Common Reed, Manna Grass, and Virginia Mallow. Water. 2018; 10(10):1445. https://doi.org/10.3390/w10101445
Chicago/Turabian StyleMarzec, Michał, Krzysztof Jóźwiakowski, Anna Dębska, Magdalena Gizińska-Górna, Aneta Pytka-Woszczyło, Alina Kowalczyk-Juśko, and Agnieszka Listosz. 2018. "The Efficiency and Reliability of Pollutant Removal in a Hybrid Constructed Wetland with Common Reed, Manna Grass, and Virginia Mallow" Water 10, no. 10: 1445. https://doi.org/10.3390/w10101445
APA StyleMarzec, M., Jóźwiakowski, K., Dębska, A., Gizińska-Górna, M., Pytka-Woszczyło, A., Kowalczyk-Juśko, A., & Listosz, A. (2018). The Efficiency and Reliability of Pollutant Removal in a Hybrid Constructed Wetland with Common Reed, Manna Grass, and Virginia Mallow. Water, 10(10), 1445. https://doi.org/10.3390/w10101445