Hydrological Restoration and Water Resource Management of Siberian Crane (Grus leucogeranus) Stopover Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Remote Sensing Data
2.2.2. Siberian Crane Data
2.3. Model Calculation
2.3.1. Ecological Water Demand Calculation
2.3.2. Three-Dimensional Simulation for Water Supply
3. Results and Discussion
3.1. Relationship between Siberian Crane Number and Wetland Area
3.2. Wetland Ecological Water Demand
3.2.1. Wetland Plant Water Demand
3.2.2. Surface Evaporation Water Demand
3.2.3. Wetland Soil Water Demand
3.2.4. Siberian Crane Stopover Habitat Water Demand
3.2.5. Water Supply Demand
3.2.6. Total Ecological Water Demand
3.3. Three-Dimensional Dynamic Simulation and Correction of Ecological Water Demand
3.3.1. Three-Dimensional Model
3.3.2. Correction Effect for Water Supply
3.4. Water Resource Management Schemes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Debeljak, M.; Džeroski, S.; Jerina, K.; Kobler, A.; Adamič, M. Habitat suitability modelling for red deer (Cervus elaphus L.) in South-central Slovenia with classification trees. Ecol. Model. 2001, 138, 321–330. [Google Scholar] [CrossRef]
- Mitsch, W.J. Wetland creation, restoration, and conservation: A wetland invitational at the Olentangy River Wetland Research Park. Ecol. Eng. 2005, 24, 243–251. [Google Scholar] [CrossRef]
- Bortolotti, L.E.; Vinebrooke, R.D.; St Louis, V.L. Prairie wetland communities recover at different rates following hydrological restoration. Freshw. Biol. 2016, 61, 1874–1890. [Google Scholar] [CrossRef]
- Cooper, D.J.; Kaczynski, K.M.; Sueltenfuss, J.; Gaucherand, S.; Hazen, C. Mountain wetland restoration: The role of hydrologic regime and plant introductions after 15 years in the Colorado Rocky Mountains, USA. Ecol. Eng. 2017, 101, 46–59. [Google Scholar] [CrossRef]
- Cui, B.S.; Yang, Q.C.; Yang, Z.F.; Zhang, K.J. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 2009, 35, 1090–1103. [Google Scholar] [CrossRef]
- Dawson, S.K.; Warton, D.I.; Kingsford, R.T.; Berney, P.; Keith, D.A.; Catford, J.A. Plant traits of propagule banks and standing vegetation reveal flooding alleviates impacts of agriculture on wetland restoration. J. Appl. Ecol. 2017, 54, 1907–1918. [Google Scholar] [CrossRef]
- Liu, X.Y.; Tao, K.Y.; Sun, J.; He, C.Q.; Cui, J.; Chen, X.P. The introduction of woody plants for freshwater wetland restoration alters the archaeal community structure in soil. Land Degrad. Dev. 2017, 28, 1933–1942. [Google Scholar] [CrossRef]
- Baird, A.; Wilby, R.L. Eco-hydrology: Plant and water in terrestrial and aquatic environments. J. Ecol. 1999, 88, 1095–1096. [Google Scholar] [CrossRef]
- Hu, Z.J.; Ge, Z.M.; Ma, Q.; Zhang, Z.T.; Tang, C.D.; Cao, H.B.; Zhang, T.Y.; Li, B.; Zhang, L.Q. Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary. Ecol. Eng. 2015, 83, 354–363. [Google Scholar] [CrossRef]
- Obolewski, K.; Glinska-Lewczuk, K.; Jarzab, N.; Burandt, P.; Kobus, S.; Kujawa, R.; Okruszko, T.; Grabowska, M.; Lew, S.; Gozdziejewska, A.; et al. Benthic invertebrates in Floodplain Lakes of a Polish River: Structure and biodiversity analyses in relation to hydrological conditions. Pol. J. Environ. Stud. 2014, 23, 1679–1689. [Google Scholar]
- Zhou, J.; Zheng, L.D.; Pan, X.; Li, W.; Kang, X.M.; Li, J.; Ning, Y.; Zhang, M.X.; Cui, L.J. Hydrological conditions affect the interspecific interaction between two emergent wetland species. Front. Plant Sci. 2018, 8, 2253. [Google Scholar] [CrossRef] [PubMed]
- Brandyk, A.; Majewski, G. Modeling of hydrological conditions for the restoration of Przemkowsko-Przeclawskie Wetlands. Annu. Set Environ. Prot. 2013, 15, 371–392. [Google Scholar]
- Carvalho, D.; Horta, P.; Raposeira, H.; Santos, M.; Luís, A.; Cabral, J.A. How do hydrological and climatic conditions influence the diversity and behavioural trends of water birds in small Mediterranean reservoirs? A community-level modelling approach. Ecol. Model. 2013, 257, 80–87. [Google Scholar] [CrossRef]
- Martinez-Martinez, E.; Nejadhashemi, A.P.; Woznicki, S.A.; Love, B.J. Modeling the hydrological significance of wetland restoration scenarios. J. Environ. Manag. 2014, 133, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.F.; He, H.M.; Jiang, X.H.; Yang, S.T.; Wang, G.Q. Natural ecological water demand in the lower Heihe River. Front. Environ. Sci. Eng. China 2008, 2, 63–68. [Google Scholar] [CrossRef]
- Jin, X.; Yan, D.H.; Wang, H.; Zhang, C.; Tang, Y.; Yang, G.Y.; Wang, L.H. Study on integrated calculation of ecological water demand for basin system. Sci. China Technol. Sci. 2011, 54, 2638–2648. [Google Scholar] [CrossRef]
- Yu, F.K.; Huang, X.H.; Liang, Q.B.; Yao, P.; Li, X.Y.; Liao, Z.Y.; Duan, C.Q.; Zhang, G.S.; Shao, H.B. Ecological water demand of regional vegetation: The example of the 2010 severe drought in Southwest China. Plant Biosyst. 2015, 149, 100–110. [Google Scholar] [CrossRef]
- Cai, X.; Rosegrant, M.W. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands. Water Resour. Res. 2004, 40, 474–480. [Google Scholar] [CrossRef]
- Yan, D.H.; Wang, G.; Wang, H.; Qin, T.L. Assessing ecological land use and water demand of river systems: A case study in Luanhe River, North China. Hydrol. Earth Syst. Sci. 2012, 16, 2469–2483. [Google Scholar] [CrossRef]
- Berkowitz, J.F.; White, J.R. Linking wetland functional rapid assessment models with quantitative hydrological and biogeochemical measurements across a restoration chronosequence. Soil Sci. Soc. Am. J. 2013, 77, 1442–1451. [Google Scholar] [CrossRef]
- He, C.G.; Ishikawa, T.; Sheng, L.X.; Irie, M. Study on the hydrological conditions for the conservation of the nesting habitat of the Red-crowned Crane in Xianghai Wetlands, China. Hydrol. Process. 2009, 23, 612–622. [Google Scholar] [CrossRef]
- Jiang, H.B.; Wen, Y.; Zou, L.F.; Wang, Z.Q.; He, C.G.; Zou, C.L. The effects of a wetland restoration project on the Siberian Crane (Grus leucogeranus) population and stopover habitat in Momoge National Nature Reserve, China. Ecol. Eng. 2016, 96, 170–177. [Google Scholar] [CrossRef]
- Li, Y.P.; Huang, G.H.; Nie, S.L. Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method. Adv. Water Resour. 2010, 33, 1105–1117. [Google Scholar] [CrossRef]
- Rad, A.M.; Ghahramana, B.; Khalili, D.; Ghahremani, Z.; Ardakani, S.A. Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions. Adv. Water Resour. 2017, 107, 336–353. [Google Scholar] [CrossRef]
- Li, F.S.; Wu, J.D.; Harris, J.; Burham, J. Number and distribution of cranes wintering at Poyang Lake, China during 2011–2012. Chin. Birds 2012, 3, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.B.; He, C.G.; Sheng, L.X.; Tang, Z.H.; Wen, Y.; Yan, T.T.; Zou, C.L. Hydrological modelling for Siberian Crane Grus Leucogeranus stopover sites in northeast China. PLoS ONE 2015, 10, e0122687. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.Y.; Wang, Z.M.; Liu, D.W.; Li, L.; Ren, C.Y.; Tang, X.G.; Jia, M.M.; Liu, C.Y. Assessment of habitat suitability for waterbirds in the West Songnen Plain, China, using remote sensing and GIS. Ecol. Eng. 2013, 55, 94–100. [Google Scholar] [CrossRef]
- Wang, X.Y.; Feng, J.; Zhao, J.M. Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China. Environ. Monit. Assess. 2010, 161, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.F.; Cui, B.S.; Liu, J.L.; Wang, X.Q.; Liu, C.M. Theory, Methods and Practices of Ecological Environment Water Demand; Science Press: Beijing, China, 2003. [Google Scholar]
- Yang, Z.F.; Liu, J.L.; Sun, T.; Cui, B.S. Environmental Flows in Basins; Science Press: Beijing, China, 2006. [Google Scholar]
- Ning, Y.; Zhang, Z.X.; Cui, L.J.; Zou, C.L. Adaptive significance of and factors affecting plasticity of biomass allocation and rhizome morphology: A case study of the clonal plant Scirpus planiculmis (cyperaceae). Pol. J. Ecol. 2014, 62, 77–88. [Google Scholar] [CrossRef]
- Arfanuzzaman, M.; Rahman, A.A. Sustainable water demand management in the face of rapid urbanization and ground water depletion for social–ecological resilience building. Glob. Ecol. Conserv. 2017, 10, 9–22. [Google Scholar] [CrossRef]
Grade | Cover Degree (%) | Study Area (km2) | Evaporation (mm) | Water Demand (108 m3) |
---|---|---|---|---|
Minimum | 30–50 | 303.10 | 1000 | 0.91–1.52 |
Optimum | 60–80 | 303.10 | 1000~1200 | 1.82–2.91 |
Grade | Evaporation (mm) | Area of Study Area (km2) | β (%) | Water Demand (108 m3) |
---|---|---|---|---|
Minimum | 1813.4 | 303.10 | 4~7 | 0.22~0.39 |
Optimum | 1813.4 | 303.10 | 20~70 | 1.10~3.85 |
Grade | Field Capacity (%) | Soil Thickness (m) | Soil Area (km2) | Water Demand (108 m3) |
---|---|---|---|---|
Minimum | 35~45 | 1.2 | 281.88~290.98 | 1.22~1.52 |
Optimum | 45~55 | 1.2 | 90.93~248.54 | 0.60~1.31 |
Grade | Area of Study Area (km2) | β (%) | Water Level (m) | Water Demand (108 m3) |
---|---|---|---|---|
Minimum | 303.10 | 4~7 | 0.10~0.20 | 0.01~0.04 |
Optimum | 303.10 | 20~70 | 0.30~0.50 | 0.18~1.09 |
Grade | Area of Study Area (km2) | β (%) | Permeability Coefficient (m/d) | Supplement Time (d) | Water Demand (108 m3) |
---|---|---|---|---|---|
Minimum | 303.10 | 4~7 | 0.005 | 180 | 0.11~0.19 |
Optimum | 303.10 | 20~70 | 0.005 | 180 | 0.55~1.91 |
Grade | Plant (108 m3) | Surface Evaporation (108 m3) | Stopover Habitat (108 m3) | Soil (108 m3) | Water Supplement (108 m3) | Total Water Demand (108 m3) |
---|---|---|---|---|---|---|
Minimum | 0.91~1.52 | 0.22~0.39 | 0.01~0.04 | 1.22~1.52 | 0.11~0.19 | 2.47~3.66 |
Optimum | 1.82~2.91 | 1.10~3.85 | 0.18~1.09 | 0.60~1.31 | 0.55~1.91 | 4.96~10.36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; He, C.; Luo, W.; Yang, H.; Sheng, L.; Bian, H.; Zou, C. Hydrological Restoration and Water Resource Management of Siberian Crane (Grus leucogeranus) Stopover Wetlands. Water 2018, 10, 1714. https://doi.org/10.3390/w10121714
Jiang H, He C, Luo W, Yang H, Sheng L, Bian H, Zou C. Hydrological Restoration and Water Resource Management of Siberian Crane (Grus leucogeranus) Stopover Wetlands. Water. 2018; 10(12):1714. https://doi.org/10.3390/w10121714
Chicago/Turabian StyleJiang, Haibo, Chunguang He, Wenbo Luo, Haijun Yang, Lianxi Sheng, Hongfeng Bian, and Changlin Zou. 2018. "Hydrological Restoration and Water Resource Management of Siberian Crane (Grus leucogeranus) Stopover Wetlands" Water 10, no. 12: 1714. https://doi.org/10.3390/w10121714
APA StyleJiang, H., He, C., Luo, W., Yang, H., Sheng, L., Bian, H., & Zou, C. (2018). Hydrological Restoration and Water Resource Management of Siberian Crane (Grus leucogeranus) Stopover Wetlands. Water, 10(12), 1714. https://doi.org/10.3390/w10121714