Hydrometeorological Conditions for the Occurrence of Aeolian Processes on the Southern Baltic Coast in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aim and Methods
- –
- Potentially favorable to initiation of aeolian processes (maximum wind speed ≥4 m·s−1, no precipitation in the last two days, average daily air temperature >0 °C, maximum sea level (storm level) <570 cm).
- –
- Particularly conducive to intensification of aeolian processes (maximum wind speed ≥10 m·s−1, precipitation <5 mm/2 days, minimum air temperature >0 °C, maximum sea level (average level over many years) <~502 cm).
2.2. Hydrometeorological Data
2.3. Study Area
3. Results
3.1. Hydrometeorological Conditions
3.2. Potentially and Particularly Favorable Hydrometeorological Conditions for the Occurrence of Aeolian Processes
4. Discussion
5. Conclusions
- –
- The hydrometeorological and morpholithodynamic conditions of the coastal zone are conducive to aeolian processes. The average annual number of days with conditions favorable to initiation of aeolian processes is particularly high in terms of sea level (360 days) and air temperature (319 days). This number is slightly lower for wind speed (296 days), and lowest for precipitation (128 days). All of these factors must occur simultaneously for the initiation of aeolian processes. For this reason, the average annual number of potentially favorable events was 85. The number of days with conditions particularly conducive to intensification of aeolian processes was significantly lower (only three). While the average annual number of days with conducive conditions in terms of air temperature and precipitation was high (290 and 281 days), this number was significantly lower for sea level (140 days), and negligible for wind speed (only 10 days). Therefore, the average annual number of days with conditions potentially favorable to initiation of aeolian processes is nearly 30 times greater than the number of days with conditions particularly conducive to their intensification.
- –
- The Pomeranian Bay (Świnoujście) and Gdańsk Bay (Hel) are particularly predisposed to the occurrence of hydrometeorological conditions potentially favorable to aeolian processes. In these areas, aeolian processes can occur for over 3 months per year on average. In the open coastal zone, aeolian processes can occur for around 2 months per year on average, e.g., in Kołobrzeg.
- –
- The upwards trend of conditions particularly favorable to the intensification of aeolian processes for Ustka is probably related to the coastline’s exposure to seaward winds. An additional effect may be the increase in share of winds associated with storms.
- –
- Clustering of high frequencies of potential aeolian processes occurred in the 1970s. The lowest frequency of hydrometeorological conditions for the occurrence of aeolian processes was recorded in the first decade of the 21st century. Aeolian processes may occur on as few as 32 days per year (Kołobrzeg, 2010), and as many as 143 days per year (Świnoujście and Hel, 1989). In seasonal terms, the hydrometeorological conditions most conducive to initiation and intensification of aeolian processes occurred in the spring, especially from April to June.
- –
- Conditions conducive to intensification of aeolian processes indicate that there is positive and negative wind activity within the coastal zone. Seaward wind directions cause formation of forms on the beach and build up foredunes. In addition, they cause flooding of promenades, pavements and streets in seaside resorts. Inland wind directions cause dissipation of dunes and clear off sandy material to the sea. Seaward and alongshore directions contribute to lowering of the beach area and transporting sand to other sections of the beach.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Łabuz, T.A. Polish coastal dunes—Affecting factors and morphology. Landf. Anal. 2013, 22, 33–59. [Google Scholar] [CrossRef]
- Hojan, M. Aeolian processes on the cliffs of Wolin Island. In Quaestiones Geographicae; Adam Mickiewicz University Press: Poznań, Poland, 2009; Volume 28, pp. 39–46. ISBN 978-83-232-2133-3. [Google Scholar]
- Hojan, M.; Więcław, M. Influence of meteorological conditions on aeolian processes along the Polish cliff coast. Baltica 2014, 27, 61–72. [Google Scholar] [CrossRef]
- Borówka, R.K. Multi-year trends of change in the intensity of potential aeolian transport on the West Pomeranian Coast of the Baltic in context of the morphology and present-day development of coastal dunes. In Quaternary Studies in Poland SI; Polish Scientific Publishers PWN: Warszawa, Poland, 1999; pp. 67–75. [Google Scholar]
- Hildebrandt-Radke, I. The effect of meteorological factors on aeolian transport on the beach of the Gardno-Łeba Barrier. In Quaternary Studies in Poland SI; Polish Scientific Publishers PWN: Warszawa, Poland, 1999; pp. 109–114. [Google Scholar]
- Hildebrandt-Radke, I. Rola szerokości plaży w nasyceniu strumienia wiatrowo-piaszczystego na plaży Mierzei Gardnieńsko-Łebskiej. Badania Fizjograficzne nad Polską Zachodnią 2002, 53, 43–56. [Google Scholar]
- Borówka, R.K. Present day dune processes and dune morphology on the Łeba Barrier, polish coast of the Baltic. Geografiska Annaler 1980, 62A, 75–82. [Google Scholar] [CrossRef]
- Borówka, M.; Rotnicki, K. Balance of the aeolian sand transport on the beach and the problem of sand nourishment of the active dune field on the Łeba Barrier. J. Coast. Res. 1995, 22, 257–265. [Google Scholar]
- Borówka, M.; Rotnicki, K. Main directions of aeolian sand transport and its budget on barier sandy beach (Łeba Barrier case study). In Ewolucja Geosystemów Nadmorskich Południowego; Bałtyku, R.K., Borówka, Z., Młynarczyk, A., Eds.; Bogucki Wyd. Nauk.: Szczecin, Poland, 1999; pp. 17–24. ISBN 83-88163-02-7. [Google Scholar]
- Rotnicka, J. Aeolian Sand Transport on a Tideless Beach: Rate, Controlling Factors and Influence on Foredune Formation (Łeba Barrier Case, Poland); Bogucki Wyd. Nauk.: Poznań, Poland, 2013; ISBN 978-83-63400-71-2. [Google Scholar]
- Rotnicka, J. Aeolian vertical mass flux profiles above dry and moist sandy beach surfaces. Geomorphology 2013, 187, 27–37. [Google Scholar] [CrossRef]
- Zawadzka-Kahlau, E. Morphodynamics of Southern Baltic Dune Coasts; Wydawnictwo Uniwersytetu Gdańskiego: Gdańsk, Poland, 2012; ISBN 978-83-7865-016-4. [Google Scholar]
- Žilinskas, G.; Jarmalavièius, D.; Pupienis, D. The influence of natural and anthropogenic factors on grain size distribution along the south eastern Baltic spits. Geol. Q. 2018, 62, 375–384. [Google Scholar]
- Bauer, B.O.; Davidson-Arnott, R.G.D.; Hesp, P.A.; Namikas, S.L.; Ollerhead, J.; Walker, I.J. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology 2009, 105, 106–116. [Google Scholar] [CrossRef]
- Rotnicka, J. Impact of beach surface type on the rate of sand transport by wind. In Proceedings of the 11th International Coastal Symposium, Szczecin, Poland, 9–13 May 2011; pp. 2058–2062. [Google Scholar]
- Nikulin, G.; Kjellström, E.; Hansson, U.; Jones, C.; Strandberg, G.; Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 2011, 63A, 41–55. [Google Scholar] [CrossRef]
- Bierstedt, S.E.; Hünicke, B.; Zorita, E. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus 2015, 67, 29073. [Google Scholar] [CrossRef] [Green Version]
- Bierstedt, S.E.; Hünicke, B.; Zorita, E.; Ludwig, J. A wind proxy based on migrating dunes at the Baltic coast: Statistical analysis of the link between wind conditions and sand movement. Earth Syst. Dyn. 2017, 8, 639–652. [Google Scholar] [CrossRef]
- Rutgersson, A.; Jaagus, J.; Schenk, F.; Stendel, M.; Bärring, L.; Briede, A.; Claremar, B.; Hanssen-Bauer, I.; Holopainen, J.; Moberg, A.; et al. Recent Change—Atmosphere. In Second Assessment of Climate Change for the Baltic Sea Basin; Springer International Publishing: Berlin, Germany, 2015; pp. 69–97. [Google Scholar] [Green Version]
- Clemmensen, L.B.; Hansen, K.W.T.; Kroon, A. Storminess variation at Skagen, northern Denmark since ad 1860: Relations to climate change and implications for coastal dunes. Aeolian Res. 2014, 15, 101–112. [Google Scholar] [CrossRef]
- Hünicke, B.; Zorita, E. Influence of temperature and precipitation on decadal Baltic Sea level variations in the 20th century. Tellus 2006, 58A, 141–153. [Google Scholar] [CrossRef]
- Jaagus, J.; Kull, A. Changes in surface wind directions in Estonia during 1966–2008 and their relationships with large-scale atmospheric circulation. Estonian J. Earth Sci. 2011, 60, 220–231. [Google Scholar] [CrossRef]
- Reimann, T.; Tsukamoto, S.; Harff, J.; Osadczuk, K.; Frechen, M. Reconstruction of holocene coastal foredune progradation using luminescence dating—An example from the Swina Barrier (Southern Baltic sea, NW Poland). Geomorphology 2011, 132, 1–16. [Google Scholar] [CrossRef]
- Subotowicz, W. Transformation of the cliff coast in Poland. J. Coast. Res. 1995, 22, 57–62. [Google Scholar]
- Molodkov, A.; Bitinas, A. Sedimentary record and luminescence chronology of the Lateglacial and Holocene aeolian sediments in Lithuania. Boreas 2006, 35, 244–254. [Google Scholar] [CrossRef]
- Kovaleva, A.; Chubarenko, B.; Pupienis, D. Grain size variability as an indicator of sediment transport alongshore the Curonian Spit (south-eastern Baltic Sea). Baltica 2016, 29, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Rotnicki, K.; Borzyszkowska, W. Accelerated sea level rise and its components at the Polish Baltic Coast in the years 1951–1990. In Ewolucja Geosystemów Nadmorskich Południowego Bałtyku; Borówka, R.K., Młynarczyk, Z., Wojciechowski, A., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland; Szczecin, Poland, 1999; pp. 141–160. ISBN 83-88163-02-7. [Google Scholar]
- Rosentau, A.; Bennike, O.; Uścinowicz, S.; Miotk-Szpiganowicz, G. The Baltic Sea Basin. In Submerged Landscapes of the European Continental Shelf: Quaternary Paleoenvironments, 1st ed.; Flemming, N.C., Harff, J., Moura, D., Burgess, A., Bailey, G.N., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 103–133. [Google Scholar] [CrossRef]
- Wolski, T. Spatial and Temporal Characteristics of the Extreme Sea Levels of the Baltic Sea; Wydawnictwo Naukowe Uniwersytetu Szczecińskiego: Szczecin, Poland, 2017; ISBN 978-83-7972-091-0. [Google Scholar]
- Sztobryn, M.; Stigge, H.J. Storm Surges on the Southern Baltic Sea; IMGW Press: Warszawa, Poland, 2005; ISBN 83-88897-61-6. [Google Scholar]
- Wiśniewski, B.; Wolski, T. Occurrence probability of maximum sea levels in Polish ports of Baltic Sea coast. Pol. Mar. Res. 2009, 3, 62–69. [Google Scholar] [CrossRef]
- Łabuz, T.A.; Grunewald, R.; Bobykina, V.; Chubarenko, B.; Česnulevičius, A.; Bautrenas, A.; Morkunaite, R.; Tõnisson, H. Coastal dunes of the Baltic Sea shores: A review. Quaest. Geogr. 2018, 37, 47–71. [Google Scholar] [CrossRef]
- Koraim, A.S.; Heikal, E.M.; AboZaid, A. Different methods used for protecting coast from sea level rise caused by climate change. Curr. Dev. Oceanogr. 2011, 3, 33–66. [Google Scholar]
- Rotnicka, J. Factors controlling the development of foredunes along the Łeba Barrier on the south Baltic coast of Poland. In Proceedings of the 11th International Coastal Symposium, Szczecin, Poland, 9–13 May 2011. [Google Scholar]
- Zhang, W.; Schneider, R.; Kolb, J.; Teichmann, T.; Dudzinska-Nowak, J.; Harff, J.; Hanebuth, T.J.J. Land–sea interaction and morphogenesis of coastal foredunes—A modeling case study from the Southern Baltic Sea coast. Coast. Eng. 2015, 99, 148–166. [Google Scholar] [CrossRef]
- Kostrzewski, A.; Zwoliński, Z.; Winowski, M.; Tylkowski, J.; Samołyk, M. Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic). Baltica 2015, 28, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Tylkowski, J. Hydro-meteorological conditions underpinning cliff-coast erosion on Wolin Island, Poland. Przegląd Geograficzny 2018, 90, 111–135. [Google Scholar] [CrossRef]
- Ludwig, J.; Lindhorst, S.; Betzler, C.; Bierstedt, S.E.; Borówka, R.K. Sedimentary rhythms in coastal dunes as a record of intra-annual changes in wind climate (Łeba, Poland). Aeolian Res. 2017, 27, 67–77. [Google Scholar] [CrossRef]
- Riksen, M.J.P.; Goossens, D. The role of wind and splash erosion in inland drift-sand areas in the Netherlands. Geomorphology 2007, 88, 179–192. [Google Scholar] [CrossRef]
- Subotowicz, W. Litodynamika Brzegów Klifowych Wybrzeża Polski; Gdańskie Towarzystwo Naukowe, Ossolineum: Wrocław, Poland, 1982; ISBN 83-04-01301-0. [Google Scholar]
- Tylkowski, J. The temporal and spatial variability of coastal dune erosion in the Polish Baltic coastal zone. Baltica 2017, 30, 97–106. [Google Scholar] [CrossRef]
- Kadib, A.A. Mechanism of sand movement on coastal dunes. Proceedings of the American Society of Civil Engineers. Waterw. Div. 1966, 2, 27–44. [Google Scholar]
- Svasek, J.; Terwindt, J. Measurements of sand transport by wind on a natural beach. Sedimentology 1974, 21, 311–322. [Google Scholar] [CrossRef]
- Horikawa, K.; Hotta, S.; Kubota, S.; Katori, S. On the sand transport rat by wind on beach. Coast. Eng. Jpn. 1983, 26, 101–120. [Google Scholar] [CrossRef]
- Psuty, N.P. Sediment budget and dune/beach interaction. J. Coast. Res. SI 1988, 3, 1–4. [Google Scholar]
- McEwan, I.K.; Wilets, B.B. On the prediction of bed-load sand transport rate in air. Sedimentology 1994, 41, 1241–1251. [Google Scholar] [CrossRef]
- Sherman, D.J.; Li, B.; Ellis, J.T.; Farrell, E.J.; Maia, L.P.; Granja, H. Recalibrating Aeolian sand transport models. Earth Surf. Processes Landf. 2013, 38, 169–178. [Google Scholar] [CrossRef]
- Hesp, P.A. Foredune formation in Southeast Australia. In Coastal Geomorphology in Australia; Thom, B.G., Ed.; Academic Press: Sydney, Australia, 1984; pp. 69–97. [Google Scholar]
- Łabuz, T.A. Morphodynamics and rate of Cliff erosion in Trzęsacz (1997–2017). Landf. Anal. 2017, 34, 29–50. [Google Scholar] [CrossRef]
- Świątek, M. Precipitation changes on the Polish coast of the Baltic Sea (1954–2003) due to changes in intensity of westerlies over Europe. Clim. Res. 2011, 48, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Tylkowski, J. Temporal and spatial variability of air temperature and precipitation at the Polish coastal zone of the Southern Baltic Sea. Baltica 2013, 26, 83–94. [Google Scholar] [CrossRef]
- Wiśniewski, B.; Wolski, T.; Musielak, S. A long-term trend and temporal fluctuations of the sea level at the Polish Baltic coast. Oceanol. Hydrobiol. Stud. 2011, 40, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Miętus, M. Variability of Air Temperature and Precipitation in the Polish Baltic Coast and its Expected Course until 2030; Materiały Badawcze: Meteorologia, Poland, 1996. [Google Scholar]
- Russell, G.L.; Gornitz, V.; Miller, J.R. Regional sea level changes projected by the NASA/GISS atmosphere-ocean model. Clim. Dyn. 2000, 16, 789–797. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Wehner, M. Long-term climate change: Projections, commitments and irreversibility. In Climate Change the Physical Science Basis (1029–1136), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Christensen, O.B.; Kjellström, E.; Zorita, E. Projected Change—Atmosphere. In The BACC II Author Team Second Assessment of Climate Change for the Baltic Sea Basin; Regional Climate Studies; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-16006-1. [Google Scholar]
- Lehtonen, I.; Ruosteenoja, K.; Jylhä, K. Projected changes in European extreme precipitation indices on the basis of global and regional climate model ensembles. Int. J. Climatol. 2014, 34, 1208–1222. [Google Scholar] [CrossRef]
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Chang. 2012, 110, 669–696. [Google Scholar] [CrossRef]
Hydrometeorological Criteria for Aeolian Processes Initiation | Place | Time Period | |||||
---|---|---|---|---|---|---|---|
1961–1970 | 1971–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 1961–2010 | ||
Mean Number of Days in Year | |||||||
Wind speed ≥4 m·s−1 | Świnoujście | 293 | 315 | 344 | 264 | 262 | 295 |
Kołobrzeg | 305 | 288 | 253 | 214 | 192 | 250 | |
Ustka | 312 | 306 | 291 | 302 | 351 | 312 | |
Hel | 325 | 337 | 336 | 319 | 319 | 327 | |
Mean air temperature >0 °C | Świnoujście | 303 | 322 | 323 | 327 | 322 | 319 |
Kołobrzeg | 301 | 322 | 324 | 327 | 321 | 319 | |
Ustka | 300 | 320 | 321 | 329 | 323 | 318 | |
Hel | 301 | 318 | 322 | 326 | 321 | 318 | |
Sea level <502 cm | Świnoujście | 362 | 361 | 358 | 360 | 358 | 360 |
Kołobrzeg | 362 | 360 | 358 | 360 | 358 | 360 | |
Ustka | 363 | 361 | 358 | 361 | 359 | 360 | |
Hel | 364 | 362 | 360 | 361 | 361 | 361 | |
Precipitation 0 mm/2 days | Świnoujście | 137 | 141 | 131 | 141 | 127 | 135 |
Kołobrzeg | 122 | 127 | 123 | 128 | 122 | 124 | |
Ustka | 123 | 128 | 119 | 126 | 125 | 124 | |
Hel | 131 | 133 | 126 | 123 | 122 | 127 | |
Potential favorable days for aeolian processes initiation | Świnoujście | 85 | 105 | 107 | 86 | 79 | 92 |
Kołobrzeg | 75 | 81 | 66 | 56 | 44 | 64 | |
Ustka | 80 | 85 | 76 | 88 | 104 | 87 | |
Hel | 94 | 103 | 100 | 92 | 88 | 96 |
Hydrometeorological Criteria for Aeolian Processes Intensification | Place | Time Period | |||||
---|---|---|---|---|---|---|---|
1961–1970 | 1971–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 1961–2010 | ||
Mean Number of Days in Year | |||||||
Maximum wind speed ≥10 m s−1 | Świnoujście | 24 | 41 | 47 | 22 | 28 | 32 |
Kołobrzeg | 14 | 10 | 4 | 3 | 2 | 6 | |
Ustka | 34 | 24 | 15 | 34 | 95 | 40 | |
Hel | 64 | 85 | 39 | 18 | 11 | 43 | |
Minimum air temperature >0 °C | Świnoujście | 275 | 287 | 290 | 292 | 289 | 286 |
Kołobrzeg | 268 | 285 | 287 | 291 | 286 | 283 | |
Ustka | 308 | 308 | 308 | 308 | 308 | 308 | |
Hel | 267 | 282 | 287 | 293 | 292 | 284 | |
Mean sea level <502 cm | Świnoujście | 169 | 174 | 134 | 149 | 112 | 148 |
Kołobrzeg | 159 | 177 | 126 | 139 | 110 | 142 | |
Ustka | 158 | 156 | 121 | 137 | 109 | 136 | |
Hel | 144 | 158 | 114 | 123 | 122 | 132 | |
Precipitation <5 mm/2 days | Świnoujście | 286 | 293 | 289 | 286 | 285 | 288 |
Kołobrzeg | 272 | 279 | 279 | 275 | 267 | 274 | |
Ustka | 271 | 272 | 273 | 278 | 278 | 275 | |
Hel | 291 | 293 | 286 | 290 | 282 | 288 | |
Particularly favorable days for aeolian processes intensification | Świnoujście | 4 | 6 | 5 | 2 | 2 | 4 |
Kołobrzeg | 1 | 1 | 0 | 0 | 0 | 0 | |
Ustka | 3 | 1 | 0 | 3 | 9 | 3 | |
Hel | 6 | 11 | 1 | 1 | 0 | 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hojan, M.; Tylkowski, J.; Rurek, M. Hydrometeorological Conditions for the Occurrence of Aeolian Processes on the Southern Baltic Coast in Poland. Water 2018, 10, 1745. https://doi.org/10.3390/w10121745
Hojan M, Tylkowski J, Rurek M. Hydrometeorological Conditions for the Occurrence of Aeolian Processes on the Southern Baltic Coast in Poland. Water. 2018; 10(12):1745. https://doi.org/10.3390/w10121745
Chicago/Turabian StyleHojan, Marcin, Jacek Tylkowski, and Mirosław Rurek. 2018. "Hydrometeorological Conditions for the Occurrence of Aeolian Processes on the Southern Baltic Coast in Poland" Water 10, no. 12: 1745. https://doi.org/10.3390/w10121745