How do Soil Moisture and Vegetation Covers Influence Soil Temperature in Drylands of Mediterranean Regions?
Abstract
:1. Introduction
2. Study Areas
3. Material and Methods
3.1. Soil Water and Soil Temperature Measurements
3.2. Determining Soil Properties and Meteorological Variables
3.3. Determining the Influence of Vegetation Covers and Soil Moisture on Soil Temperature
3.4. Determining the Importance of Factors Involved in Soil Water Decrease
3.4.1. Database Processing
3.4.2. Modelling Factors that Influence Soil Water Decrease
4. Results
4.1. Effects of Vegetation Covers and Soil Moisture on Soil Temperatures
4.2. Factors Influencing the Decrease of Soil Water
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Collier, C.G. Hydrometeorology; Wiley Blackwell: Hoboken, NJ, USA; University of Leeds: Leeds, UK, 2016. [Google Scholar]
- Alexander, L. Climate science: Extreme heat rooted in dry soils. Nat. Geosci. 2011, 4, 12–13. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-amplified amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Campos, P.; Huntsinger, L.; Oviedo, J.L.; Starrs, P.F.; Diaz, M.; Standiford, R.B.; Montero, G. Mediterranean Oak Woodland Working Landscapes. Dehesas of Spain and Ranchlands of California; Springer Netherlands: Dordrecht, The Netherlands, 2013; p. 508. [Google Scholar]
- Joffre, R.; Rambal, S.; Ratte, J.P. The dehesa system of southern spain and portugal as a natural ecosystem mimic. Agrofor. Syst. 1999, 45, 57–79. [Google Scholar] [CrossRef]
- Seneviratne, S.; Corti, T.; Davin, E.; Hirschi, M.; Jaeger, E.; Lehner, I.; Orlowsky, B.; Teuling, A. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Callaway, R.M. Positive Interactions and Interdependence in Plant Communities; Springer: Dordrecht, The Netherlands, 2007; p. 418. [Google Scholar]
- Asbjornsen, H.; Goldsmith, G.R.; Alvarado-Barrientos, M.S.; Rebel, K.; Osch, F.P.V.; Rietkerk, M.; Chen, J.; Gotsch, S.; Tobón, C.; Geissert, D.R.; et al. Ecohydrological advances and applications in plant–water relations research: A review. J. Plant Ecol. 2011, 4, 3–22. [Google Scholar] [CrossRef]
- Eviner, V.; Chapin, S. Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 455–485. [Google Scholar] [CrossRef]
- Jose, S.; Gillespie, A.R.; Pallardy, S.G. Interspecific interactions in temperate agroforestry. Agrofor. Syst. 2004, 61–62, 237–255. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, D.; Zhang, H.; Li, G.; Jin, Y.; Li, Q. Effects of vegetation height and density on soil temperature variations. Chin. Sci. Bull. 2013, 58, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Parra, J.; Schnabel, S.; Ceballos-Barbancho, A. The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of mediterranean climate. J. Hydrol. 2015, 529, 951–961. [Google Scholar] [CrossRef]
- Joffre, R.; Rambal, S. How tree cover influences the water balance of mediterranean rangelands. Ecology 1993, 74, 570–582. [Google Scholar] [CrossRef]
- Calder, I.; Rosier, P.; Prasanna, K.; Parameswarappa, S. Eucalyptus water use greater than rainfall input-a possible explanation from southern india. Hydrol. Earth Syst. Sci. 1997, 1, 249–256. [Google Scholar] [CrossRef]
- García-Estringana, P.; Latron, J.; Llorens, P.; Gallart, F. Spatial and temporal dynamics of soil moisture in a Mediterranean mountain area (Vallcebre, NE Spain). Ecohydrology 2013, 6, 741–753. [Google Scholar] [CrossRef]
- Idso, S.; Schmugge, T.; Jackson, R.; Reginato, R. The utility of surface temperature measurements for the remote sensing of surface soil water status. J. Geophys. Res. 1975, 80, 3044–3049. [Google Scholar] [CrossRef]
- Reginato, R.; Idso, S.; Vedder, J.; Jackson, R.; Blanchard, M.; Goettelman, R. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements. J. Geophys. Res. 1976, 81, 1617–1620. [Google Scholar] [CrossRef] [Green Version]
- Al-Kayssi, A.; Al-Karaghouli, A.; Hasson, A.; Beker, S. Influence of soil moisture content on soil temperature and heat storage under greenhouse conditions. J. Agric. Eng. Res. 1990, 45, 241–252. [Google Scholar] [CrossRef]
- Lakshmi, V.; Jackson, T.; Zehrfuhs, D. Soil moisture–temperature relationships: Results from two field experiments. Hydrol. Process. 2003, 17, 3041–3057. [Google Scholar] [CrossRef]
- Collatz, J.; Bounoua, L.; Los, S.; Randall, D.; Fung, I.; Sellers, P. A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate. Geophys. Res. Lett. 2000, 27, 3381–3384. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.-K.; Cai, M.; Kalnay, E.; Zhou, L. Impact of vegetation types on surface temperature change. J. Appl. Meteorol. Clim. 2008, 47, 411–424. [Google Scholar] [CrossRef]
- Cheruy, F.; Dufresne, J.; Aït Mesbah, S.; Grandpeix, J.; Wang, F. Role of soil thermal inertia in surface temperature and soil moisture-temperature feedback. J. Adv. Model. Earth Syst. 2017, 9, 2906–9019. [Google Scholar] [CrossRef]
- Zhou, L.; Dickinson, R.; Tian, Y.; Vose, R.; Dai, Y. Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the sahel. PNAS 2007, 104, 17937–17942. [Google Scholar] [CrossRef] [PubMed]
- Herguido, E.; Lavado-Contador, J.F.; Pulido, M.; Schnabel, S. Spatial patterns of lost and remaining trees in the Iberian wooded rangelands. Appl. Geogr. 2017, 87, 170–183. [Google Scholar] [CrossRef]
- Hoff, C.; Rambal, S. An examination of the interaction between climate, soil and leaf area index in a quercus ilex ecosystem. Ann. For. Sci. 2003, 60, 153–161. [Google Scholar] [CrossRef]
- Lozano-Parra, J.; Schnabel, S.; Pulido, M.; Gómez-Gutiérrez, Á.; Lavado-Contador, F. Effects of soil moisture and vegetation cover on biomass growth in water-limited environments. Land Degrad. Dev. 2018. [Google Scholar] [CrossRef]
- Pulido-Fernández, M.; Schnabel, S.; Lavado-Contador, J.F.; Miralles-Mellado, I.; Ortega-Pérez, R. Soil organic matter of Iberian open woodland rangelands as influenced by vegetation cover and land management. Catena 2013, 109, 13–24. [Google Scholar] [CrossRef]
- Cobos, D.R.; Chambers, C. Calibrating ECH2O Soil Moisture Sensors. Decagon Device Application Note. , 2010. Available online: www.decagon.com (accessed on 15 October 2011).
- Walkley, A.; Black, L.A. An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- USDA. Soil survey laboratory methods manual. In Soil Survey Investigations; Report No. 42, Version 4.0; USDA-NCRS: Lincoln, OR, USA, 2004. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; Volume 106, p. 191. [Google Scholar]
- Braganza, K.; Karoly, D.; Arblaster, J. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The Retc Code for Quantifying the Hydraulic Functions of Unsaturated Soils; Version 6.02; EPA Report 600/2-91/065; U.S. Department of Agriculture, Agricultural Research Service: Riverside, CA, USA, 1991; p. 93.
- Cassel, D.; Nielsen, D. Field capacity and available water capacity. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Method; Klute, A., Ed.; American Society of Agronomy-Soil Science Society of America: Madison, WI, USA, 1986; Volume 9, pp. 901–924. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements- Fao Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56, p. 322. [Google Scholar]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Lozano-Parra, J.; Van Schaik, L.; Schnabel, S.; Gómez-Gutiérrez, Á. Soil moisture dynamics at high temporal resolution in a mediterranean watershed with scattered tree cover. Hydrol. Process. 2016, 30, 1155–1170. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Nassar, I.; Globus, A.; Horton, R. Simultaneous soil heat and water transfer. Soil Sci. 1992, 154, 465–472. [Google Scholar] [CrossRef]
- Gu, L.; Meyers, T.; Pallardy, S.; Hanson, P.; Yang, B.; Heuer, M.; Hosman, K.; Riggs, J.; Sluss, D.; Wullschleger, S. Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. J. Geophys. Res. 2006, 111, 1–13. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Hirschi, M.; Seneviratne, S.I.; Alexandrov, V.; Boberg, F.; Boroneant, C.; Christensen, O.B.; Formayer, H.; Orlowsky, B.; Stepanek, P. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 2011, 4, 17–21. [Google Scholar] [CrossRef]
- Longobardi, P.; Montenegro, A.; Beltrami, H.; Eby, M. Deforestation induced climate change: Effects of spatial scale. PLoS ONE 2016, 11, e0153357. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Parra, J.; Maneta, M.; Schnabel, S. Climate and topographic controls on simulated pasture production in a semiarid Mediterranean watershed with scattered tree cover. Hydrol. Earth Syst. Sci. 2014, 18, 1439–1456. [Google Scholar] [CrossRef] [Green Version]
- Breshears, D.; Nyhan, J.; Heil, C.; Wilcox, B. Effects of woody plants on microclimate in a semiarid woodland: Soil temperature and evaporation in canopy and intercanopy patches. Int. J. Plant Sci. 1998, 159, 1010–1017. [Google Scholar] [CrossRef]
Study Area | Vegetation Cover | SMS | Symbol |
---|---|---|---|
Cuartos (C) | Grassland (G) | 1 | CG1 |
Tree (T) | 1 | CT1 | |
Parapuños (P) | Grassland (G) | 1, 2, 3 | PG1, PG2, PG3 |
Tree (T) | 1 | PT1 | |
Naranjero (N) | Grassland (G) | 1 | NG1 |
Tree (T) | 1 | NT1 |
SMS | Soil | Depth (cm) | Clay (%) | Silt (%) | Sand (%) | OM (%) | Porosity (%) | BD (g/cm3) |
---|---|---|---|---|---|---|---|---|
CG1 | Epileptic Cambisol | 5–15 | 9.3 | 49.6 | 41.2 | 2.3 | 43.2 | 1.50 |
30 | 14.1 | 50.0 | 35.9 | 1.3 | 39.0 | 1.62 | ||
CT1 | Epileptic Cambisol | 5–15 | 10.3 | 53.4 | 36.2 | 1.3 | 41.6 | 1.55 |
30 | 13.9 | 54.9 | 31.2 | 0.2 | 42.9 | 1.51 | ||
PG1 | Chromic Luvisol | 5–15 | 10.1 | 42.1 | 47.9 | 0.8 | 38.5 | 1.63 |
45 | 64.0 | 24.2 | 11.9 | 0.0 | 41.5 | 1.55 | ||
PG2 | Chromic Luvisol | 5–15 | 6.6 | 46.5 | 46.8 | 1.5 | 38.3 | 1.64 |
40 | n.a | n.a | n.a | n.a | 50.5 | 1.31 | ||
PG3 | Epileptic Cambisol | 5–15 | 9.5 | 56.0 | 34.5 | 2.2 | 46.5 | 1.42 |
30 | 13.1 | 59.2 | 27.7 | 1.0 | 39.1 | 1.61 | ||
PT1 * | Distric Leptosol | 5–15 | 7.1 | 51.3 | 40.5 | 3.8 | 45.2 | 1.50 |
NG1 | Distric Cambisol | 5–15 | 6.2 | 51.6 | 42.3 | 3.7 | 42.0 | 1.54 |
35 | 14.3 | 50.6 | 35.1 | 0.9 | 32.1 | 1.80 | ||
NT1 | Distric Leptosol | 5–15 | 4.8 | 47.5 | 47.8 | 3.2 | 52.4 | 1.26 |
20 | 8.4 | 47.4 | 44.2 | 1.5 | 45.2 | 1.45 |
Cover | Database | n | Mean | Median | SD | Max | Min |
---|---|---|---|---|---|---|---|
Grassland | Training | 2239 | 0.178 | 0.156 | 0.082 | 0.350 | 0.060 |
Test | 559 | 0.167 | 0.146 | 0.075 | 0.349 | 0.064 | |
Tree | Training | 962 | 0.167 | 0.155 | 0.076 | 0.351 | 0.032 |
Test | 240 | 0.165 | 0.149 | 0.084 | 0.358 | 0.033 |
Cover | Dry | MD | MW | Wet | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Grasslands | 29.4 * | 4.5 * | 21.7 * | 3.6 * | 13.7 * | 2.4 * | 9.5 * | 1.7 * |
Trees | 22.5 * | 1.6 * | 17.6 * | 1.3 * | 14.7 * | 1.0 * | 12.3 * | 0.9 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Parra, J.; Pulido, M.; Lozano-Fondón, C.; Schnabel, S. How do Soil Moisture and Vegetation Covers Influence Soil Temperature in Drylands of Mediterranean Regions? Water 2018, 10, 1747. https://doi.org/10.3390/w10121747
Lozano-Parra J, Pulido M, Lozano-Fondón C, Schnabel S. How do Soil Moisture and Vegetation Covers Influence Soil Temperature in Drylands of Mediterranean Regions? Water. 2018; 10(12):1747. https://doi.org/10.3390/w10121747
Chicago/Turabian StyleLozano-Parra, Javier, Manuel Pulido, Carlos Lozano-Fondón, and Susanne Schnabel. 2018. "How do Soil Moisture and Vegetation Covers Influence Soil Temperature in Drylands of Mediterranean Regions?" Water 10, no. 12: 1747. https://doi.org/10.3390/w10121747
APA StyleLozano-Parra, J., Pulido, M., Lozano-Fondón, C., & Schnabel, S. (2018). How do Soil Moisture and Vegetation Covers Influence Soil Temperature in Drylands of Mediterranean Regions? Water, 10(12), 1747. https://doi.org/10.3390/w10121747