Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale)
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of Drawn Water (Raw)
2.2. Technology System for Water Treatment
2.3. Research Procedure
2.4. Evaluation of Work of Model Filter-Test EMS
- ΔCOD—loss of COD (with K2Cr2O7 or with KMnO4)
- ΔO2—loss of dissolved oxygen
- S = 1 adsorption and biodecomposition happen with identical intensiveness,
- S > 1 adsorption dominates,
- S < 1 biodecomposition dominates,
- S = 0, ΔCOD = 0, ΔO2 > 0 sorption and biodecomposition processes stopped
- S undetermined, ΔCOD > 0, ΔO2 = 0 sorption present, biodecomposition absentΔCOD = 0, ΔO2 = 0 sorption and biodecomposition absent
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vreeburg, J.H.G.; Boxall, J.B. Discolouration in potable water distribution systems: A review. Water Res. 2007, 41, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Harrington, G.W. Biostability analysis for drinking water distribution systems. Water Res. 2007, 41, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Hallam, N.; West, J.; Forster, C.; Simms, J. The potential for biofilm growth in water distribution systems. Water Res. 2001, 35, 4063–4071. [Google Scholar] [CrossRef]
- Manuel, C.M.; Nunes, O.C.; Melo, L.F. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 2007, 41, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Volk, C.J.; LeChevallier, M.W. Assessing biodegradable organic matter. Am. Water Works Assoc. 2000, 92, 64–76. [Google Scholar] [CrossRef]
- Chu, C.; Lu, C.; Lee, C. Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems. J. Environ. Manag. 2005, 74, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, J.; Liu, T.; Kong, W.; He, X.; Jin, Y.; Zhang, B. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Escobar, I.C.; Randall, A.A. Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). Water Res. 2001, 35, 4444–4454. [Google Scholar] [CrossRef]
- Van Der Kooij, D. Biological stability: A multidimensional quality aspect of treated water. Water Air. Soil Pollut. 2000, 123, 25–34. [Google Scholar] [CrossRef]
- Simpson, D.R. Biofilm processes in biologically active carbon water purification. Water Res. 2008, 42, 2839–2848. [Google Scholar] [CrossRef] [PubMed]
- Kaleta, J.; Kida, M.; Koszelnik, P.; Papciak, D.; Puszkarewicz, A.; Tchórzewska-Cieślak, B. The use of activated carbons for removing organic matter from groundwater. Arch. Environ. Prot. 2017, 43, 32–41. [Google Scholar] [CrossRef]
- Rattier, M.; Reungoat, J.; Gernjak, W.; Keller, J. Organic Micropollutant Removal by Biological Activated Carbon Filtration: A Review; Urban Water Security Research Alliance-University of Queensland: Brisbane, QLD, Australia, 2012. [Google Scholar]
- Korshin, G.V.; Wu, W.W.; Benjamin, M.M.; Hemingway, O. Correlations between differential absorbance and the formation of individual DBPs. Water Res. 2002, 36, 3273–3282. [Google Scholar] [CrossRef]
- Tchórzewska-Cieślak, B.; Papciak, D.; Pietrucha-Urbanik, K.; Pietrzyk, A. Safety analysis of tap water biostability. Archit. Civ. Eng. Environ. 2018, 11, 149–154. [Google Scholar] [CrossRef]
- Liu, W.; Wu, H.; Wang, Z.; Ong, S.; Hu, J.; Ng, W. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Res. 2002, 36, 891–898. [Google Scholar] [CrossRef]
- Camper, A.K.; LeChevallier, M.W.; Broadaway, S.C.; McFeters, G.A. Bacteria associated with granular activated carbon particles in drinking water. Appl Environ. Microbiol. 1986, 52, 434–438. [Google Scholar]
- Wang, Q.; You, W.; Li, X.; Yang, Y.; Liu, L. Seasonal changes in the invertebrate community of granular activated carbon filters and control technologies. Water Res. 2014, 51, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, A.; Papciak, D. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons. E3S Web Conf. 2017, 17. [Google Scholar] [CrossRef]
- Papciak, D.; Kaleta, J.; Puszkarewicz, A.; Tchórzewska-Cieślak, B. The use of biofiltration process to remove organic matter from grounwater. J. Ecol. Eng. 2016, 17, 119–124. [Google Scholar] [CrossRef]
- Wolborska, A.; Zarzycki, R.; Cyran, J.; Grabowska, H.; Wybór, M. Evaluation of the biological activity of carbon filters in surface water treatment on the example of a water supply “Sulejów-Łódź”. Ochr. Śr. 2003, 25, 27–32. (In Polish) [Google Scholar]
- Perchuć, M.; Grabińska-Łoniewska, A. Technology Research the Effect of the Type of Coal Used in the BAF to Remove Humic Acids from Drinking Water; Czestochowa University of Technology: Częstochowa, Poland, 1998; pp. 144–153. (In Polish) [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. 1998. EUR-Lex Web site. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083 (accessed on 29 November 2018).
- Wolska, M. Removal of Biogenic Substances in the Technology of Water Purification Intended for Human Consumption; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2015. (In Polish) [Google Scholar]
- Hijnen, W.; Schurer, R.; Martijn, B.; Bahlman, J.A.; Hoogenboezem, W.; van der Wielen, P. Removal of Easily and more Complex Biodegradable NOM by Full-Scale BAC Filters to Produce Biological Stable Drinking Water. In Progressing in Slow Sand and Alternative Biofiltration Processes—Further Developments and Applications; Nakamoto, N., Graham, N., Collins, M.R., Eds.; IWA Publishing: London, UK, 2014; pp. 1–8. [Google Scholar]
- Urbanowska, A.; Kabsch-Korbutowicz, M. Characteristics of natural organic matter removed from water along with its treatment. Environ. Prot. Eng. 2016, 42, 183–195. [Google Scholar] [CrossRef]
- Seredyńska-Sobecka, B.; Tomaszewska, M.; Janus, M.; Morawski, A.W. Biological activation of carbon filters. Water Res. 2006, 40, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Korotta-Gamage, S.M.; Sathasivan, A. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere 2017, 167, 120–138. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, A.; Papciak, D. The effectiveness of organic matter removal in unit processes of the technological groundwater treatment system. E3S Web Conf. 2018, 44. [Google Scholar] [CrossRef]
- Lohwacharin, J.; Yang, Y.; Watanabe, N.; Phetrak, A.; Sakai, H.; Murakami, M.; Oguma, K.; Takizawa, S. Characterization of DOM Removal by Full-Scale Biological Activated Carbon (BAC) Filters Having Different Ages. In Proceedings of the IWA Specialty Conference on Natural Organic Matter, Costa Mesa, CA, USA, 27–29 July 2011; pp. 1–15. [Google Scholar]
- Rigobello, E.S.; Dantas, A.D.B.; Di Bernardo, L.; Vieira, E.M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere 2013, 92, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Chen, C.; Chang, C.-H.; Wang, Z.; Zhang, X.; Xie, S. Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnol. Bioprocess Eng. 2012, 17, 881–886. [Google Scholar] [CrossRef]
- Moll, D.M.; Summers, R.S.; Fonseca, A.C.; Matheis, W. Impact of temperature on drinking water biofilter performance and microbial community structure. Environ. Sci. Technol. 1999, 33, 2377–2382. [Google Scholar] [CrossRef]
- Emelko, M.B.; Huck, P.M.; Coffey, B.M.; Smith, E.F. Effects of media, backwash, and temperature on full-scale biological filtration. J. Am. Water Works Assoc. 2006, 98, 61–73. [Google Scholar] [CrossRef]
- Selbes, M.; Amburgey, J.; Peeler, C.; Alansari, A.; Karanfil, T. Evaluation of seasonal performance of conventional and phosphate-amended biofilters. J. Am. Water Works Assoc. 2016, 108, 523–532. [Google Scholar] [CrossRef]
- Hallé, C.; Huck, P.M.; Peldszus, S. Emerging contaminant removal by biofiltration: Temperature, concentration, and EBCT impacts. J. Am. Water Works Assoc. 2015, 107, 364–379. [Google Scholar] [CrossRef]
- Corre, C.; Couriol, C.; Amrane, A.; Dumont, E.; Andrès, Y.; Le Cloirec, P. Efficiency of biological activator formulated material (BAFM) for volatile organic compounds removal—preliminary batch culture tests with activated sludge. Environ. Technol. 2012, 33, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Lauderdale, C.; Chadik, P.; Kirisits, M.J.; Brown, J. Engineered biofiltration: Enhanced biofilter performance through nutrient and peroxide addition. J. Am. Water Works Assoc. 2012, 104, 298–309. [Google Scholar] [CrossRef]
- Dhawan, S.; Basu, O.D.; Banihashemi, B. Influence of nutrient supplementation on DOC removal in drinking water biofilters. Water Sci. Technol. Water Supply 2017, 17, 422–432. [Google Scholar] [CrossRef]
- Lehtola, M.J.; Miettinen, I.T.; Lampola, T.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res. 2005, 39, 1962–1971. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, M.J.; Miettinen, I.T.; Keinänen, M.M.; Kekki, T.K.; Laine, O.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 2004, 38, 3769–3779. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, M. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Water Res. 2001, 35, 1635–1640. [Google Scholar] [CrossRef]
- Rosenberg, H. Phosphate Transport in Prokaryotes. In Ion Transport in Prokaryotes; Rosen, B.P., Ed.; Academic Press: Cambridge, MA, USA, 1987; pp. 205–248. [Google Scholar]
- Ko, Y.-S.; Lee, Y.-J.; Nam, S. Evaluation of a pilot scale dual media biological activated carbon process for drinking water. Korean J. Chem. Eng. 2007, 24, 253–260. [Google Scholar] [CrossRef]
- Urfer, D.; Huck, P.M. Measurement of biomass activity in drinking water biofilters using a respirometric method. Water Res. 2001, 35, 1469–1477. [Google Scholar] [CrossRef]
- Pharand, L.; Van Dyke, M.I.; Anderson, W.B.; Huck, P.M. Assessment of biomass in drinking water biofilters by adenosine triphosphate. J. Am. Water Works Assoc. 2014, 106, 433–444. [Google Scholar] [CrossRef]
- Niemi, R.M.; Heiskanen, I.; Heine, R.; Rapala, J. Previously uncultured β-proteobacteria dominate in biologically active granular activated carbon (BAC) filters. Water Res. 2009, 43, 5075–5086. [Google Scholar] [CrossRef] [PubMed]
- Persson, F.; Heinicke, G.; Uhl, W.; Hedberg, T.; Hermansson, M. Performance of direct biofiltration of surface water for reduction of biodegradable oganic matter and biofilm formation potential. Environ. Technol. 2006, 27, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Velten, S.; Boller, M.; Köster, O.; Helbing, J.; Weilenmann, H.-U.; Hammes, F. Development of biomass in a drinking water granular active carbon (GAC) filter. Water Res. 2011, 45, 6347–6354. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Lu, X.; Yin, L.; Yang, F.; Zhu, G.; Liu, W. Microbial community characterization, activity analysis and purifying efficiency in a biofilter process. J. Environ. Sci. 2013, 25, 677–687. [Google Scholar] [CrossRef]
- Terry, L.G.; Summers, R.S. Biodegradable organic matter and rapid-rate biofilter performance: A review. Water Res. 2018, 128, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Boon, N.; Pycke, B.F.G.; Marzorati, M.; Hammes, F. Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics. Water Res. 2011, 45, 6355–6361. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huck, P.M.; Slawson, R.M. Factors Affecting Drinking Water Biofiltration. J. Am. Water Works Assoc. 2001, 93, 90–101. [Google Scholar] [CrossRef]
- Zamorska, J. Biological stability of water after the biofiltration process. J. Ecol. Eng. 2018, 19, 234–239. [Google Scholar] [CrossRef]
- Kolaski, P.; Wysocka, A.; Lasocka-Gomuła, I.; Pruss, A.; Michałkiewicz, M.; Cybulski, Z. Removal of organic matter from water during rapid filtration through a biologically active carbon filter beds—A full scale technological investigation. Technol. Wody 2018, 5, 8–15. (In Polish) [Google Scholar]
Indicator | Unit | Range of Changes |
---|---|---|
Total Organic carbon (TOC) | g O2/m3 | 11.0–14.5 |
Permanganate value | g O2/m3 | 11.0–18.1 |
Turbidity | NTU | 8.0–14.0 |
Colour | g Pt/m3 | 40–100 |
Ammonia nitrogen | g NH4⁺/m3 | 1.20–1.98 |
pH | - | 6.4–7.0 |
Temperature | °C | 10.8–12.1 |
Hardness | g CaCO3/m3 | 200–470 |
Sulfate | g SO42−/m3 | 60–240 |
Conductivity | mS/cm | 430–1016 |
Alkalinity | val/m3 | 2.5–4.5 |
Operating Parameters | Value | Properties of the Filter Material | Value |
---|---|---|---|
Height of the carbon bed, m | 1.12 | Granulation, mm | 1–4 |
Diameter, m | 0.055 | Specific surface, m2/g | 950–1050 |
Filtration velocity, m/h | 1.5–2.0 | The iodine value, mg/g | 998 |
Contact time, h | 0.5 | pH aqueous extract | 11 |
Parameters | Analytical Method/Standard |
---|---|
Total organic carbon (TOC) | TOC analyzer Sievers 5310 C (SUEZ, Boulder, CO, USA) |
Permanganate value | The permanganate method |
UV absorbance | Spectrophotometric method |
Inorganic nitrogen content (N-NH4+ + N-NO2− + N-NO3−) | N-NH4+: direct nessleryization method using Merck spectrophotometer N-NO2−: colorimetric method by Nitrite Test Merck 1.14408 N-NO3−: spectrophotometric method with sodium salicylate |
Inorganic phosphorus content | Spectrophotometric method with ammonium molybdate using Merck spectrophotometer |
Dissolved oxygen (DO) | Electrochemical method using a Hach-Lange oxygen probe |
The total number of bacteria at 37 °C after 24 h (mesophilic bacteria) | Traditional culture method using A Agar from BTL Ltd. |
The total number of bacteria at 22 °C after 72 h (psychrophilic bacteria) | |
Escherichia coli bacteria | Membrane filtration procedure using Endo agar |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domoń, A.; Papciak, D.; Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K. Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale). Water 2018, 10, 1764. https://doi.org/10.3390/w10121764
Domoń A, Papciak D, Tchórzewska-Cieślak B, Pietrucha-Urbanik K. Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale). Water. 2018; 10(12):1764. https://doi.org/10.3390/w10121764
Chicago/Turabian StyleDomoń, Andżelika, Dorota Papciak, Barbara Tchórzewska-Cieślak, and Katarzyna Pietrucha-Urbanik. 2018. "Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale)" Water 10, no. 12: 1764. https://doi.org/10.3390/w10121764
APA StyleDomoń, A., Papciak, D., Tchórzewska-Cieślak, B., & Pietrucha-Urbanik, K. (2018). Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale). Water, 10(12), 1764. https://doi.org/10.3390/w10121764