Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Drawn Water (Raw)
2.2. Technology System for Water Treatment
2.3. Research Procedure
2.4. Evaluation of Work of Model Filter-Test EMS
- ΔCOD—loss of COD (with K2Cr2O7 or with KMnO4)
- ΔO2—loss of dissolved oxygen
- S = 1 adsorption and biodecomposition happen with identical intensiveness,
- S > 1 adsorption dominates,
- S < 1 biodecomposition dominates,
- S = 0, ΔCOD = 0, ΔO2 > 0 sorption and biodecomposition processes stopped
- S undetermined, ΔCOD > 0, ΔO2 = 0 sorption present, biodecomposition absentΔCOD = 0, ΔO2 = 0 sorption and biodecomposition absent
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vreeburg, J.H.G.; Boxall, J.B. Discolouration in potable water distribution systems: A review. Water Res. 2007, 41, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Harrington, G.W. Biostability analysis for drinking water distribution systems. Water Res. 2007, 41, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Hallam, N.; West, J.; Forster, C.; Simms, J. The potential for biofilm growth in water distribution systems. Water Res. 2001, 35, 4063–4071. [Google Scholar] [CrossRef]
- Manuel, C.M.; Nunes, O.C.; Melo, L.F. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 2007, 41, 551–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volk, C.J.; LeChevallier, M.W. Assessing biodegradable organic matter. Am. Water Works Assoc. 2000, 92, 64–76. [Google Scholar] [CrossRef]
- Chu, C.; Lu, C.; Lee, C. Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems. J. Environ. Manag. 2005, 74, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, J.; Liu, T.; Kong, W.; He, X.; Jin, Y.; Zhang, B. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Escobar, I.C.; Randall, A.A. Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). Water Res. 2001, 35, 4444–4454. [Google Scholar] [CrossRef]
- Van Der Kooij, D. Biological stability: A multidimensional quality aspect of treated water. Water Air. Soil Pollut. 2000, 123, 25–34. [Google Scholar] [CrossRef]
- Simpson, D.R. Biofilm processes in biologically active carbon water purification. Water Res. 2008, 42, 2839–2848. [Google Scholar] [CrossRef] [PubMed]
- Kaleta, J.; Kida, M.; Koszelnik, P.; Papciak, D.; Puszkarewicz, A.; Tchórzewska-Cieślak, B. The use of activated carbons for removing organic matter from groundwater. Arch. Environ. Prot. 2017, 43, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Rattier, M.; Reungoat, J.; Gernjak, W.; Keller, J. Organic Micropollutant Removal by Biological Activated Carbon Filtration: A Review; Urban Water Security Research Alliance-University of Queensland: Brisbane, QLD, Australia, 2012. [Google Scholar]
- Korshin, G.V.; Wu, W.W.; Benjamin, M.M.; Hemingway, O. Correlations between differential absorbance and the formation of individual DBPs. Water Res. 2002, 36, 3273–3282. [Google Scholar] [CrossRef]
- Tchórzewska-Cieślak, B.; Papciak, D.; Pietrucha-Urbanik, K.; Pietrzyk, A. Safety analysis of tap water biostability. Archit. Civ. Eng. Environ. 2018, 11, 149–154. [Google Scholar] [CrossRef]
- Liu, W.; Wu, H.; Wang, Z.; Ong, S.; Hu, J.; Ng, W. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Res. 2002, 36, 891–898. [Google Scholar] [CrossRef]
- Camper, A.K.; LeChevallier, M.W.; Broadaway, S.C.; McFeters, G.A. Bacteria associated with granular activated carbon particles in drinking water. Appl Environ. Microbiol. 1986, 52, 434–438. [Google Scholar]
- Wang, Q.; You, W.; Li, X.; Yang, Y.; Liu, L. Seasonal changes in the invertebrate community of granular activated carbon filters and control technologies. Water Res. 2014, 51, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, A.; Papciak, D. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons. E3S Web Conf. 2017, 17. [Google Scholar] [CrossRef]
- Papciak, D.; Kaleta, J.; Puszkarewicz, A.; Tchórzewska-Cieślak, B. The use of biofiltration process to remove organic matter from grounwater. J. Ecol. Eng. 2016, 17, 119–124. [Google Scholar] [CrossRef]
- Wolborska, A.; Zarzycki, R.; Cyran, J.; Grabowska, H.; Wybór, M. Evaluation of the biological activity of carbon filters in surface water treatment on the example of a water supply “Sulejów-Łódź”. Ochr. Śr. 2003, 25, 27–32. (In Polish) [Google Scholar]
- Perchuć, M.; Grabińska-Łoniewska, A. Technology Research the Effect of the Type of Coal Used in the BAF to Remove Humic Acids from Drinking Water; Czestochowa University of Technology: Częstochowa, Poland, 1998; pp. 144–153. (In Polish) [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. 1998. EUR-Lex Web site. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083 (accessed on 29 November 2018).
- Wolska, M. Removal of Biogenic Substances in the Technology of Water Purification Intended for Human Consumption; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2015. (In Polish) [Google Scholar]
- Hijnen, W.; Schurer, R.; Martijn, B.; Bahlman, J.A.; Hoogenboezem, W.; van der Wielen, P. Removal of Easily and more Complex Biodegradable NOM by Full-Scale BAC Filters to Produce Biological Stable Drinking Water. In Progressing in Slow Sand and Alternative Biofiltration Processes—Further Developments and Applications; Nakamoto, N., Graham, N., Collins, M.R., Eds.; IWA Publishing: London, UK, 2014; pp. 1–8. [Google Scholar]
- Urbanowska, A.; Kabsch-Korbutowicz, M. Characteristics of natural organic matter removed from water along with its treatment. Environ. Prot. Eng. 2016, 42, 183–195. [Google Scholar] [CrossRef]
- Seredyńska-Sobecka, B.; Tomaszewska, M.; Janus, M.; Morawski, A.W. Biological activation of carbon filters. Water Res. 2006, 40, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Korotta-Gamage, S.M.; Sathasivan, A. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere 2017, 167, 120–138. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, A.; Papciak, D. The effectiveness of organic matter removal in unit processes of the technological groundwater treatment system. E3S Web Conf. 2018, 44. [Google Scholar] [CrossRef]
- Lohwacharin, J.; Yang, Y.; Watanabe, N.; Phetrak, A.; Sakai, H.; Murakami, M.; Oguma, K.; Takizawa, S. Characterization of DOM Removal by Full-Scale Biological Activated Carbon (BAC) Filters Having Different Ages. In Proceedings of the IWA Specialty Conference on Natural Organic Matter, Costa Mesa, CA, USA, 27–29 July 2011; pp. 1–15. [Google Scholar]
- Rigobello, E.S.; Dantas, A.D.B.; Di Bernardo, L.; Vieira, E.M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere 2013, 92, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Chen, C.; Chang, C.-H.; Wang, Z.; Zhang, X.; Xie, S. Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnol. Bioprocess Eng. 2012, 17, 881–886. [Google Scholar] [CrossRef]
- Moll, D.M.; Summers, R.S.; Fonseca, A.C.; Matheis, W. Impact of temperature on drinking water biofilter performance and microbial community structure. Environ. Sci. Technol. 1999, 33, 2377–2382. [Google Scholar] [CrossRef]
- Emelko, M.B.; Huck, P.M.; Coffey, B.M.; Smith, E.F. Effects of media, backwash, and temperature on full-scale biological filtration. J. Am. Water Works Assoc. 2006, 98, 61–73. [Google Scholar] [CrossRef]
- Selbes, M.; Amburgey, J.; Peeler, C.; Alansari, A.; Karanfil, T. Evaluation of seasonal performance of conventional and phosphate-amended biofilters. J. Am. Water Works Assoc. 2016, 108, 523–532. [Google Scholar] [CrossRef]
- Hallé, C.; Huck, P.M.; Peldszus, S. Emerging contaminant removal by biofiltration: Temperature, concentration, and EBCT impacts. J. Am. Water Works Assoc. 2015, 107, 364–379. [Google Scholar] [CrossRef]
- Corre, C.; Couriol, C.; Amrane, A.; Dumont, E.; Andrès, Y.; Le Cloirec, P. Efficiency of biological activator formulated material (BAFM) for volatile organic compounds removal—preliminary batch culture tests with activated sludge. Environ. Technol. 2012, 33, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Lauderdale, C.; Chadik, P.; Kirisits, M.J.; Brown, J. Engineered biofiltration: Enhanced biofilter performance through nutrient and peroxide addition. J. Am. Water Works Assoc. 2012, 104, 298–309. [Google Scholar] [CrossRef]
- Dhawan, S.; Basu, O.D.; Banihashemi, B. Influence of nutrient supplementation on DOC removal in drinking water biofilters. Water Sci. Technol. Water Supply 2017, 17, 422–432. [Google Scholar] [CrossRef]
- Lehtola, M.J.; Miettinen, I.T.; Lampola, T.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res. 2005, 39, 1962–1971. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, M.J.; Miettinen, I.T.; Keinänen, M.M.; Kekki, T.K.; Laine, O.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 2004, 38, 3769–3779. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, M. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Water Res. 2001, 35, 1635–1640. [Google Scholar] [CrossRef]
- Rosenberg, H. Phosphate Transport in Prokaryotes. In Ion Transport in Prokaryotes; Rosen, B.P., Ed.; Academic Press: Cambridge, MA, USA, 1987; pp. 205–248. [Google Scholar]
- Ko, Y.-S.; Lee, Y.-J.; Nam, S. Evaluation of a pilot scale dual media biological activated carbon process for drinking water. Korean J. Chem. Eng. 2007, 24, 253–260. [Google Scholar] [CrossRef]
- Urfer, D.; Huck, P.M. Measurement of biomass activity in drinking water biofilters using a respirometric method. Water Res. 2001, 35, 1469–1477. [Google Scholar] [CrossRef]
- Pharand, L.; Van Dyke, M.I.; Anderson, W.B.; Huck, P.M. Assessment of biomass in drinking water biofilters by adenosine triphosphate. J. Am. Water Works Assoc. 2014, 106, 433–444. [Google Scholar] [CrossRef]
- Niemi, R.M.; Heiskanen, I.; Heine, R.; Rapala, J. Previously uncultured β-proteobacteria dominate in biologically active granular activated carbon (BAC) filters. Water Res. 2009, 43, 5075–5086. [Google Scholar] [CrossRef] [PubMed]
- Persson, F.; Heinicke, G.; Uhl, W.; Hedberg, T.; Hermansson, M. Performance of direct biofiltration of surface water for reduction of biodegradable oganic matter and biofilm formation potential. Environ. Technol. 2006, 27, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Velten, S.; Boller, M.; Köster, O.; Helbing, J.; Weilenmann, H.-U.; Hammes, F. Development of biomass in a drinking water granular active carbon (GAC) filter. Water Res. 2011, 45, 6347–6354. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Lu, X.; Yin, L.; Yang, F.; Zhu, G.; Liu, W. Microbial community characterization, activity analysis and purifying efficiency in a biofilter process. J. Environ. Sci. 2013, 25, 677–687. [Google Scholar] [CrossRef]
- Terry, L.G.; Summers, R.S. Biodegradable organic matter and rapid-rate biofilter performance: A review. Water Res. 2018, 128, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Boon, N.; Pycke, B.F.G.; Marzorati, M.; Hammes, F. Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics. Water Res. 2011, 45, 6355–6361. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huck, P.M.; Slawson, R.M. Factors Affecting Drinking Water Biofiltration. J. Am. Water Works Assoc. 2001, 93, 90–101. [Google Scholar] [CrossRef]
- Zamorska, J. Biological stability of water after the biofiltration process. J. Ecol. Eng. 2018, 19, 234–239. [Google Scholar] [CrossRef]
- Kolaski, P.; Wysocka, A.; Lasocka-Gomuła, I.; Pruss, A.; Michałkiewicz, M.; Cybulski, Z. Removal of organic matter from water during rapid filtration through a biologically active carbon filter beds—A full scale technological investigation. Technol. Wody 2018, 5, 8–15. (In Polish) [Google Scholar]
Indicator | Unit | Range of Changes |
---|---|---|
Total Organic carbon (TOC) | g O2/m3 | 11.0–14.5 |
Permanganate value | g O2/m3 | 11.0–18.1 |
Turbidity | NTU | 8.0–14.0 |
Colour | g Pt/m3 | 40–100 |
Ammonia nitrogen | g NH4⁺/m3 | 1.20–1.98 |
pH | - | 6.4–7.0 |
Temperature | °C | 10.8–12.1 |
Hardness | g CaCO3/m3 | 200–470 |
Sulfate | g SO42−/m3 | 60–240 |
Conductivity | mS/cm | 430–1016 |
Alkalinity | val/m3 | 2.5–4.5 |
Operating Parameters | Value | Properties of the Filter Material | Value |
---|---|---|---|
Height of the carbon bed, m | 1.12 | Granulation, mm | 1–4 |
Diameter, m | 0.055 | Specific surface, m2/g | 950–1050 |
Filtration velocity, m/h | 1.5–2.0 | The iodine value, mg/g | 998 |
Contact time, h | 0.5 | pH aqueous extract | 11 |
Parameters | Analytical Method/Standard |
---|---|
Total organic carbon (TOC) | TOC analyzer Sievers 5310 C (SUEZ, Boulder, CO, USA) |
Permanganate value | The permanganate method |
UV absorbance | Spectrophotometric method |
Inorganic nitrogen content (N-NH4+ + N-NO2− + N-NO3−) | N-NH4+: direct nessleryization method using Merck spectrophotometer N-NO2−: colorimetric method by Nitrite Test Merck 1.14408 N-NO3−: spectrophotometric method with sodium salicylate |
Inorganic phosphorus content | Spectrophotometric method with ammonium molybdate using Merck spectrophotometer |
Dissolved oxygen (DO) | Electrochemical method using a Hach-Lange oxygen probe |
The total number of bacteria at 37 °C after 24 h (mesophilic bacteria) | Traditional culture method using A Agar from BTL Ltd. |
The total number of bacteria at 22 °C after 72 h (psychrophilic bacteria) | |
Escherichia coli bacteria | Membrane filtration procedure using Endo agar |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domoń, A.; Papciak, D.; Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K. Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale). Water 2018, 10, 1764. https://doi.org/10.3390/w10121764
Domoń A, Papciak D, Tchórzewska-Cieślak B, Pietrucha-Urbanik K. Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale). Water. 2018; 10(12):1764. https://doi.org/10.3390/w10121764
Chicago/Turabian StyleDomoń, Andżelika, Dorota Papciak, Barbara Tchórzewska-Cieślak, and Katarzyna Pietrucha-Urbanik. 2018. "Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale)" Water 10, no. 12: 1764. https://doi.org/10.3390/w10121764