Temperature-Phased Biological Hydrolysis and Thermal Hydrolysis Pretreatment for Anaerobic Digestion Performance Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge Sample Collection and Preparation
2.2. Bench-Scale Sludge Hydrolysis Pretreatment
2.3. Biological Methane Potential (BMP) Test
2.4. DNA Extraction and Illumina Sequencing
3. Results and Discussion
3.1. Sludge and Inoculum Characteristics
3.2. Effect of TH and BH Treatments on Sludge Solubilization
3.3. Effect of TH and BH Treatment on sCOD, VFA, and Alkalinity
3.4. Effects of TH and BH Treatments on Methane Production
3.5. VSS Reduction by Anaerobic Digestion
3.6. Comparison of the Results with the Three Batches of Sludge for Selected TH/BH-AD Conditions
3.7. Microbial Community Structures of the Anaerobic Mixed Liquor
3.8. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Lier, J.B.; Tilche, A.; Ahring, B.K.; Macarie, H.; Moletta, R.; Dohanyos, M.; Hulshoff Pol, L.W.; Lens, P.; Verstraete, W. New perspectives in anaerobic digestion. Water Sci. Technol. 2001, 43, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Metcalf & Eddy. Wastewater Engineering: Treatment and Resource Recovery; McGraw Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Eastman, J.A.; Ferguson, J.F. Solubilization of Particulate Organic Carbon during the Acid Phase of Anaerobic Digestion. J. Water Pollut. Control Fed. 1981, 53, 352–366. [Google Scholar]
- Neyens, E.; Baeyens, J. A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. 2003, 98, 51–67. [Google Scholar] [CrossRef]
- Lehne, G.; Muller, A.; Schwedes, J. Mechanical disintegration of sewage sludge. Water Sci. Technol. 2001, 43, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Pilli, S.; Puspendu, B.; Yan, S.; LeBlanc, R.J.; Tyagi, R.D.; Surampalli, R.Y. Ultrasonic pre-treatment of sludge: A review. Ultrasonics 2011, 18, 1–18. [Google Scholar]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef]
- Kobayashi, T.; Li, Y.Y.; Harada, H.; Yasui, H.; Noike, T. Upgrading of the anaerobic digestion of waste activated sludge by combining temperature-phased anaerobic digestion and intermediate ozonation. Water Sci. Technol. 2009, 59, 185–193. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenes, J.P.; Carrere, H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. J. 2008, 139, 236–244. [Google Scholar] [CrossRef]
- Luo, K.; Yang, Q.; Yu, J.; Li, X.; Yang, G.; Xie, B.; Yang, F.; Zheng, W.; Zeng, G. Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour. Technol. 2011, 102, 7103–7110. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y.; Zhou, Q. Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification. Chem. Eng. J. 2007, 132, 311–317. [Google Scholar] [CrossRef]
- Barjenbruch, M.; Kopplow, O. Enzymatic, Mechanical and Thermal Pre-Treatment of Surplus Sludge. Adv. Environ. Res. 2003, 7, 715–720. [Google Scholar] [CrossRef]
- Stephenson, R.; Laliberte, S.; Hoy, P.; Britch, D. Full scale and laboratory scale results from the trial of microsludge at the joint water pollution control plant at Los Angeles County. Water Pract. 2007, 1, 1–13. [Google Scholar] [CrossRef]
- Chiavola, A.; Naso, M.; Rolle, E.; Trombetta, D. Effect of ozonation on sludge reduction in a SBR plant. Water Sci. Technol. 2007, 56, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Battimelli, A.; Millet, C.; Delgenes, J.P.; Moletta, R. Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Sci. Technol. 2003, 48, 61–68. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Environmental Regulations and Technology—Control of Pathogens and Vectors in Sewage Sludge; EPA/625/R-92/013; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Wilson, C.A.; Tanneru, C.T.; Banjade, S.; Murthy, S.N.; Novak, J.T. Anaerobic Digestion of Raw and Thermally Hydrolyzed Wastewater Solids Under Various Operational Conditions. Water Environ. Res. 2011, 83, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Pickworth, B.; Adams, J.; Panter, K.; Solheim, O.E. Maximizing biogas in anaerobic digestion by using engine waste heat for thermal hydrolysis pre-treatment of sludge. Water Sci. Technol. 2006, 54, 101–108. [Google Scholar] [CrossRef]
- Kepp, U.; Machenbach, I.; Weisz, N.; Solheim, O.E. Enhanced stabilization of sewage sludge through thermal hydrolysis-three years of experience with full scale plant. Water Sci. Technol. 2000, 42, 89–96. [Google Scholar] [CrossRef]
- Valo, A.; Carrere, H.; Delgenes, J.P. Thermal, Chemical and Thermo-Chemical Pre-Treatment of Waste Activated Sludge for Anaerobic Digestion. J. Chem. Technol. Biotechnol. 2004, 79, 1197–1203. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenes, J.P.; Carrere, H. Combination of Thermal Treatments and Anaerobic Digestion to Reduce Sewage Sludge Quantity and Improve Biogas Yield. Process Saf. Environ. Prot. 2006, 84, 280–284. [Google Scholar] [CrossRef]
- Gonzalez, A.; Hendriks, A.T.W.M.; van Lier, J.B.; de Kreuk, M. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol. Adv. 2018, 36, 1434–1469. [Google Scholar] [CrossRef]
- Donoso-Bravo, A.; Retamal, C.; Carballa, M.; Ruiz-Filippi, G.; Chamy, R. Influence of temperature on the hydrolysis, acidogenesis and methanogenesis in mesophilic anaerobic digestion: Parameter identification and modeling application. Water Sci. Technol. 2009, 60, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Hu, M.; Li, P. Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor. Appl. Microbiol. Biotechnol. 2015, 99, 1977–1987. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chang, S. Impact of temperatures on microbial community structures of sewage sludge biological hydrolysis. Bioresour. Technol. 2017, 245, 502–551. [Google Scholar] [CrossRef]
- Song, Y.C.; Kwon, S.J.; Woo, J.H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res. 2004, 38, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Bungay, S.; Abdelwahab, M. Monsal Enzymic Hydrolysis—New Developments and Lessons Learnt. In Proceedings of the 13th European Biosolids & Organic Resources Conference & Workshop, Manchester, UK, 10–11 November 2008. [Google Scholar]
- Ding, H.H.; Chang, S.; Liu, Y. Biological hydrolysis pretreatment on secondary sludge: Enhancement of anaerobic digestion and mechanism study. Bioresour. Technol. 2017, 244, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Jensen, P.D.; Batstone, D.J. Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res. 2011, 45, 1597–1606. [Google Scholar] [CrossRef]
- Wu, J.; Cao, Z.; Hu, Y.; Wang, X.; Wang, G.; Zuo, J.; Wang, K.; Qian, Y. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge. Int. J. Environ. Res. Public Health 2017, 14, 1483. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.J.; Higashimori, A.; Qin, Y.; Hojo, T.; Kubota, K.; Li, Y.-Y. Comparison of hyper-thermophilic–mesophilic two-stage with single-stage mesophilic anaerobic digestion of waste activated sludge: Process performance and microbial community analysis. Chem. Eng. J. 2016, 290, 290–301. [Google Scholar] [CrossRef]
- APHA-AWWA-WEF. Standard Methods for the Examination of Water & Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, J.; Campos, L.; Guwy, A.J.; Kalyuzhnyi, D.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef]
- Hansen, T.L.; Schmidt, J.E.; Angelidaki, I.; Marca, E.; Jansen, J.L.C.; Mosbaek, H.T.H. Christensen, Method for determination of methane potentials of solid organic waste. Waste Manag. 2004, 24, 393–400. [Google Scholar] [CrossRef]
- Owen, W.F.; Stuckey, D.C.; Healy, J.B.; Young, L.Y.; McCarty, P.L. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 1979, 13, 485–492. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian classifier for rapid aaaignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Luo, K.; Li, X.; Wang, D.; Zheng, W.; Zeng, G.; Liu, J. Enhanced efficiency of biological excess sludge hydrolysis under digestion by additional enzymes. Bioresour. Technol. 2010, 101, 2924–2930. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chang, S.; Defersha, F. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor. Water Res. 2015, 78, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Yabuuchi, E.; Kanek, T.; Ikuya, Y.; Moss, C.W.; Miyoshi, N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-Nonfermenting Gram-Negative Rods in CDC Groups IIK-2 and IIb. Int. J. Syst. Bacteriol. 1983, 33, 580–598. [Google Scholar] [CrossRef]
- Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.H.; Stackebrandt, E. V7: Proteobacteria: Delta and epsilon subclasses deeply rooting bacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed.; Springer: Singapore, 2006. [Google Scholar]
- Breitenstein, A.; Wiegel, J.; Haertig, C.; Weiss, N.; Andreesen, J.R.; Lechner, U. Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int. J. Syst. Evolut. Microbiol. 2002, 52, 801–807. [Google Scholar]
- Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.H.; Stackebrandt, E. V2: Proteobacteria: Delta and epsilon subclasses deeply rooting bacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed.; Springer: Singapore, 2006. [Google Scholar]
- Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.H.; Stackebrandt, E. V3: Proteobacteria: Delta and epsilon subclasses deeply rooting bacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed.; Springer: Singapore, 2006. [Google Scholar]
- Imachi, H.; Sakai, S.; Sekiguchi, Y.; Hanada, S.; Kamagata, Y.; Ohashi, A.; Harada, H. Methanolinea tarda gen. nov., sp. nov., a methaneproducing archaeon isolated from a methanogenic digester sludge. Int. J. Syst. Evolut. Microbiol. 2008, 58, 294–301. [Google Scholar] [CrossRef]
- Li, J.; Ban, Q.; Zhang, L.; Jha, A.K. Syntrophic propionate degradation in anaerobic digestion. Int. J. Agric. Biol. 2012, 14, 843–850. [Google Scholar]
- Ferrera, I.; Ponsá, S.; Vázquez, F.; Font, X. Increasing biogas production by thermal (70 °C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 2008, 42, 186–192. [Google Scholar] [CrossRef]
- Bolzonella, D.; Cavinato, C.; Fatone, F.; Pavan, P.; Cecchi, F. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study. Waste Manag. 2012, 32, 1196–1201. [Google Scholar] [CrossRef]
- Nakasaki, K.; Kwon, S.H.; Takemoto, Y. An interesting correlation between methane production rates and archaea cell density during anaerobic digestion with increasing organic loading. Biomass Bioenergy 2015, 78, 17–24. [Google Scholar] [CrossRef]
- White, D.; Drummond, J.; Fuqua, C. The Physiology and Biochemistry of Prokaryotes, 4th ed.; Oxford University Press Inc.: New York, NY, USA, 2012. [Google Scholar]
- Cui, M.; Ma, A.; Qi, H.; Zhuang, X.; Zhuang, G. Anaerobic oxidation of methane: An “active” microbial process. MicrobiologyOpen 2015, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
Parameters | Batch 1 | Batch 2 | Batch 3 | |||
---|---|---|---|---|---|---|
CS | AD | CS | AD | CS | AD | |
TS (g/L) | 20.9 ± 0.3 | 22.2 ± 0.1 | 27.8 ± 0.0 | 22.7 ± 0.0 | 19.7 ± 2.6 | 22.3 ± 0.5 |
VS (g/L) | 14.7 ± 0.3 | 12.0 ± 0.1 | 18.9 ± 0.1 | 13.3 ± 0.1 | 13.5 ± 0.2 | 13.0 ± 0.3 |
TSS (g/L) | 19.3 ± 0.1 | 20.8 ± 0.1 | 26.0 ± 0.4 | 21.2 ± 0.2 | 18.4 ± 0.2 | 20.6 ± 0.5 |
VSS (g/L) | 13.9 ± 0.2 | 12.0 ± 0.2 | 18.0 ± 0.2 | 12.9 ± 0.2 | 13.2 ± 0.2 | 12.4 ± 0.3 |
pH | 6.7 ± 0.0 | 7.8 ± 0.0 | 6.8 ± 0.0 | 7.7 ± 0.0 | 6.8 ± 0.0 | 7.6 ± 0 |
TCOD (g/L) | 24.8 ± 0.4 | 20.6 ± 0.2 | 34.2 ± 0.4 | 22.1 ± 0.1 | 23.4 ± 0.4 | 21.8 ± 0.2 |
sCOD (mg/L) | 672.0 ± 1 | 641.0 ± 1 | 1444.0 ± 2 | 671.0 ± 1.0 | 524.0 ± 1 | 594.0 ± 11 |
VFA (mg/L) | 377.0 ± 3 | 62.9 ± 2 | 832.0 ± 9 | 65.7 ± 1.5 | 287.0 ± 5 | 53.9 ± 1.8 |
ALK (mg/L as CaCO3) | 730.5 ± 10 | 5295.0 ± 50 | 713.0 ± 5 | 5185.0 ± 100 | 763.0 ± 35 | 4593.0 ± 100 |
Test Condition | VFA Acid Species (mg/L) | ALK/VFA | ||||
---|---|---|---|---|---|---|
Acetic | Propionic | Isobutyric | Butyric | Isovaleric | ||
Control | 334.0 | 492.0 | - | - | - | 0.863 |
TH | 633.0 | 527.0 | - | - | - | 0.532 |
BH42 | 828.2 | 580.4 | 170.4 | 207.8 | 278.2 | 0.942 |
BH42+55 | 988.8 | 712.0 | 216.8 | 286.9 | 375.4 | 0.820 |
BH55+42 | 881.3 | 644.4 | 198.2 | 282.7 | 368.4 | 1.031 |
BH55 | 1014.9 | 713.1 | 235.4 | 304.9 | 451.6 | 0.794 |
Batch Test | Condition | CH4 Volume (NmL) | CH4 Yield (NmL/g COD Fed) | CH4 Yield (NmL/g VS Fed) | Sludge Solubilization (%) | CH4 Enhancement (%) |
---|---|---|---|---|---|---|
Batch 1 | Control 1 | 87.1 ± 1 | 234.3 ± 5 | 395.1 ± 7 | - | - |
BH42+55 | 90.2 ± 2 | 242.1 ± 7 | 410.4 ± 7 | 15.0 | 3.5 | |
BH55+42 | 105.1 ± 2 | 282.2 ± 10 | 477.4 ± 10 | 16.0 | 21.0 | |
TH | 99.3 ± 1 | 266.1 ± 2 | 449.9 ± 4 | 19.0 | 14.0 | |
Batch 2 | Control 2 | 107.4 ± 1 | 208.1 ± 2 | 377.1 ± 5 | - | - |
BH42+55 | 122.3 ± 5 | 238.2 ± 9 | 431.3 ± 8 | 13.0 | 15.0 | |
BH55+42 | 131.2 ± 2 | 255.3 ± 3 | 461.1 ± 6 | 13.0 | 23.0 | |
TH | 128.4 ± 2 | 248.9 ± 4 | 451.4 ± 7 | 17.0 | 20.0 | |
Batch 3 | Control 3 | 105.2 ± 1 | 223.8 ± 3 | 387.1 ± 5 | - | - |
BH42+55 | 116.3 ± 3 | 248.4 ± 5 | 429.4 ± 8 | 13.6 | 11.0 | |
BH55+42 | 125.4 ± 2 | 267.4 ± 3 | 462.4 ± 6 | 14.6 | 19.0 | |
BH75 | 126.5 ± 3 | 269.8 ± 6 | 467.1 ± 10 | 20.0 | 20.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehari, B.B.; Chang, S.; Hong, Y.; Chen, H. Temperature-Phased Biological Hydrolysis and Thermal Hydrolysis Pretreatment for Anaerobic Digestion Performance Enhancement. Water 2018, 10, 1812. https://doi.org/10.3390/w10121812
Mehari BB, Chang S, Hong Y, Chen H. Temperature-Phased Biological Hydrolysis and Thermal Hydrolysis Pretreatment for Anaerobic Digestion Performance Enhancement. Water. 2018; 10(12):1812. https://doi.org/10.3390/w10121812
Chicago/Turabian StyleMehari, Beraki Bahre, Sheng Chang, Youngseck Hong, and Han Chen. 2018. "Temperature-Phased Biological Hydrolysis and Thermal Hydrolysis Pretreatment for Anaerobic Digestion Performance Enhancement" Water 10, no. 12: 1812. https://doi.org/10.3390/w10121812