Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Meteorological and Flux Measurements
2.3. Flux Data Processing and Gap Filling
2.4. Evapotranspiration
3. Results and Discussion
3.1. Atmosphere and Soils
3.2. Energy Balance Closure
3.3. Energy and Water Availability in the Pampa Biome
3.4. Evapotranspiration Variability in the Pampa Biome
3.5. Hysteretic Relations between ETact and Meteorological Variables
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baldocchi, D.D.; Hincks, B.B.; Meyers, T.P. Measuring biosphere atmosphere exchanges of biologycally related gases with micrometeorological methods. Ecology 1988, 69, 1331–1340. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Overbeck, G.E.; Müller, S.C.; Fidelis, A.; Pfadenhauer, J.; Pillar, V.D.; Blanco, C.C.; Boldrini, I.I.; Both, R.; Forneck, E.D. Brazil’s neglected biome: The South Brazilian Campos. Perspect. Plant Ecol. Syst. 2007, 9, 101–116. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.J.; Petry, M.T.; Severo, P.O.; Carlesso, R.; Pereira, L.S. Evapotranspiration partition and crop coefficients of Tifton 85 bermudagrass as affected by the frequency of cuttings. Application of the dual Kc approach. Water 2018, 10, 558. [Google Scholar] [CrossRef]
- Boldrini, I.I.; Overbeck, G.E.; Trevisan, R. Biodiversidade de plantas. In Os Campos do Sul, 1st ed.; Pillar, V.P., Lange, O., Eds.; UFRGS: Porto Alegre, Brazil, 2015; pp. 53–70. ISBN 978-85-66106-50-3. [Google Scholar]
- Pillar, V.D.P.; Müller, S.C.; Castilhos, Z.M.S.; Jacques, A.V.A. Campos Sulinos—Conservação e uso Sustentável da Biodiversidade, 3rd ed.; Ministério do Meio Ambiente: Brasília, Brazil, 2009; 443p, ISBN 978-85-7738-117-3.
- Nabinger, C.; Ferreira, E.T.; Freitas, A.K.; Carvalho, P.C.F.; Sant’Anna, D.M. Produção animal com base no campo nativo: Aplicações de resultados de pesquisa. In Campos Sulinos—Conservação e uso Sustentável da Biodiversidade, 3rd ed.; Ministério do Meio Ambiente: Brasília, Brazil, 2009; pp. 175–199. ISBN 978-85-7738-117-3. [Google Scholar]
- Krishnan, P.; Meyers, T.P.; Scott, R.L.; Kennedy, L.; Heuer, M. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agric. For. Meteorol. 2012, 153, 31–44. [Google Scholar] [CrossRef]
- Hu, Z.; Wen, X.; Sun, X.; Li, L.; Yu, G.; Lee, X.; Li, S. Partitioning of evapotranspiration through oxygen isotopic measurements of water pools and fluxes in a temperate grassland. J. Geophys. Res. Biogeosci. 2014, 119, 358–371. [Google Scholar] [CrossRef]
- Trepekli, A.; Loupa, G.; Rapsomanikis, S. Seasonal evapotranspiration, energy fluxes and turbulence variance characteristics of a Mediterranean coastal grassland. Agric. For. Meteorol. 2016, 226–227, 13–27. [Google Scholar] [CrossRef]
- Rajan, N.; Maas, S.J.; Cui, S. Extreme drought effects on summer evapotranspiration and energy balance of a grassland in the Southern Great Plains. Ecohydrology 2015, 8, 1194–1204. [Google Scholar] [CrossRef]
- Malhi, Y.; Pegoraro, E.; Nobre, A.D.; Pereira, M.G.P.; Grace, J.; Culf, A.D.; Clement, R. Energy and water dynamics of a central Amazonian rain forest. J. Geophys. Res. 2002, 107, 8061. [Google Scholar] [CrossRef]
- Da Rocha, H.R.; Goulden, M.L.; Miller, S.D.; Menton, M.C.; Pinto, L.D.V.O.; de Freitas, H.C.; Silva Figueira, A.M. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol. Appl. 2004, 14, S22–S32. [Google Scholar] [CrossRef]
- Da Rocha, H.R.; Manzi, A.; Cabral, O.M.; Miller, S.D.; Goulden, M.L.; Saleska, S.R.; Coupe, N.R.; Wofsy, S.C.; Borma, L.S.; Artaxo, P.; et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. 2009, 114, 1–8. [Google Scholar] [CrossRef]
- Sanches, L.; Vourlitis, G.L.; Alves, M.C.; Pinto-Júnior, O.B.; Nogueira, J.S. Seasonal patterns of evapotranspiration for a Vochysia divergens Forest in the Brazilian Pantanal. Wetlands 2011, 31, 1215–1225. [Google Scholar] [CrossRef]
- Giambelluca, T.W.; Scholz, F.G.; Bucci, S.J.; Meinzer, F.C.; Goldstein, G.; Hoffmann, W.A.; Franco, A.C.; Bucherta, M.P. Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agric. For. Meteorol. 2009, 149, 1365–1376. [Google Scholar] [CrossRef]
- Cabral, O.M.R.; da Rocha, H.R.; Gash, J.H.; Freitas, H.C.; Ligo, M.A.V. Water and energy fluxes from a woodland savanna (Cerrado) in southeast Brazil. J. Hydrol. Reg. Stud. 2015, 4, 22–40. [Google Scholar] [CrossRef]
- Santos, A.B. dos; de Quadros, F.L.F.; Confortin, A.C.C.; Seibert, L.; Ribeiro, B.S.R.; Severo, P.O.; Casanova, P.T.; Machado, G.G. Rio Grande do Sul State’s (Brazil) native grasses morphogenesis under rotational grazing during spring and summer. Ciência Rural 2014, 44, 97–103. [Google Scholar] [CrossRef]
- Quadros, F.L.F.; Pillar, V.P. Dinâmica vegetacional em pastagem natural submetida a tratamentos de queima e pastejo. Ciência Rural 2001, 31, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.B.; Soares, E.M.; Jochims, F.; Tiecher, T.; Marques, A.R.; Kuinchtner, B.C.; Rheinheimer, D.S.; de Quadros, F.L.F. Long-Term Effects of Phosphorus on Dynamics of an Overseeded Natural Grassland in Brazil. Rangel. Ecol. Manag. 2015, 68, 445–452. [Google Scholar] [CrossRef]
- Confortin, A.C.C.; Quadros, F.L.F.; Santos, A.B.; Seibert, L.; Severo, P.O.; Ribeiro, B.S.R. Leaf tissue fluxes of Pampa biome native grasses submitted to two grazing intervals. Grass Forage Sci. 2016, 71, 1–9. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Available online: http://mapas.ibge.gov.br/tematicos/solos (accessed on 25 May 2017).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Overbeck, G.E.; Boldrini, I.I.; Carmo, M.R.B.; Garcia, E.N.; Moro, R.S.; Pinto, C.E.; Trevisan, R.; Zannin, A. Fisionomia dos Campos. In Os Campos do Sul, 1st ed.; Pillar, V.P., Lange, O., Eds.; UFRGS: Porto Alegre, Brazil, 2015; pp. 33–41. ISBN 978-85-66106-50-3. [Google Scholar]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple parameterisation for flux footprint predictions. Bound.-Lay. Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapor transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Gash, J.H.C.; Culf, A.D. Applying linear de-trend to eddy correlation data in real time. Bound.-Lay. Meteorol. 1996, 79, 301–306. [Google Scholar] [CrossRef]
- Moncrieff, J.; Clement, R.; Finnigan, J.; Meyers, T. Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In Handbook of Micrometeorology; Lee, X., Massman, W., Law, B., Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 29, pp. 7–31. ISBN 978-1-4020-2265-4. [Google Scholar]
- Moncrieff, J.B.; Massheder, J.M.; Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. J. Hydrol. 1997, 188–189, 589–611. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T. Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol. Z. 2006, 15, 597–609. [Google Scholar] [CrossRef]
- Nakai, T.; Shimoyama, K. Ultrasonic anemometer angle of attack errors under turbulent conditions. Agric. For. Meteorol. 2012, 18, 162–163. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- INMET—Instituto Nacional de Meteorologia. Available online: http://www.inmet.gov.br/portal/ (accessed on 21 March 2018).
- Climate Prediction Center—NOAA. Available online: http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 19 October 2017).
- Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 2001, 106, 153–168. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, U.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 2000, 30, 113–175. [Google Scholar] [CrossRef]
- Wilson, K.B.; Allen, G.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Kanda, M.; Inagaki, A.; Letzel, M.O.; Raasch, S.; Watanabe, T. LES study of the energy imbalance problem with eddy covariance fluxes. Bound.-Lay. Meteorol. 2004, 110, 381–404. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Caselles, V.; Rubio, E.M. Analysis of the energy balance closure over a FLUXNET boreal forest in Finland. Hydrol. Earth Syst. Sci. 2010, 14, 1487–1497. [Google Scholar] [CrossRef] [Green Version]
- Barr, A.G.; Van der Kamp, G.; Black, T.A.; McCaughey, J.H.; Nesic, Z. Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull Creek watershed 1999–2009. Agric. For. Meteorol. 2012, 153, 3–13. [Google Scholar] [CrossRef]
- Foken, T.; Leuning, R.; Oncley, S.R.; Mauder, M.; Aubinet, M. Corrections and data quality control. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 85–131. ISBN 978-94-007-2350-4. [Google Scholar]
- Kuplich, T.M.; Moreira, A.; Fontana, D.C. Série temporal de índice de vegetação sobre diferentes tipologias vegetais no Rio Grande do Sul. Rev. Bras. Eng. Agríc. Ambient. 2013, 17, 1116–1123. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Evaporation. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill Inc.: New York, NY, USA, 1993; pp. 4.1–4.53. [Google Scholar]
- Bagley, J.E.; Kueppers, L.M.; Billesbach, D.P.; Williams, I.N.; Biraud, S.C.; Torn, M.S. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains. J. Geophys. Res. Atmos. 2017, 122, 5793–5807. [Google Scholar] [CrossRef]
- Gokmen, M.; Vekerdy, Z.; Verhoef, A.; Verhoef, W.; Batelaan, O.; van der Tol, C. Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sens. 2012, 121, 261–274. [Google Scholar] [CrossRef]
- Teuling, A.J.; Seneviratne, S.I.; Williams, C.; Troch, P.A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 2006, 33, L23403. [Google Scholar] [CrossRef]
- Mortarini, L.; Stefanello, M.; Degrazia, G.; Roberti, D.; Castelli, S.T.; Anfossi, D. Characterization of wind meandering in low-wind-speed conditions. Bound.-Lay. Meteorol. 2016, 161, 165–182. [Google Scholar] [CrossRef]
- Arbage, M.C.A.; Degrazia, G.A.; Welter, G.S.; Roberti, D.R.; Acevedo, O.C.; Moraes, O.L.L.; Ferraz, S.T.; Timm, A.U.; Moreira, V.S. Turbulent statistical characteristics associated to the north wind phenomenon in Southern Brazil with application to turbulent diffusion. Phys. A Stat. Mech. Appl. 2008, 387, 4376–4386. [Google Scholar] [CrossRef]
- Paoloni, J.D.; Sequeira, M.E.; Fiorentino, C.E.; Amiotti, N.M.; Vazquez, R.J. Waterresources in the semi-arid Pampa–Patagonia transitional region of Argentina. J. Arid Environ. 2003, 53, 257–270. [Google Scholar] [CrossRef]
- Goulart, M.A.; Sanches, L.; Vilani, M.T.; Pinto Júnior, O.B. Análise da evapotranspiração por wavelet de Morlet em área de Vochysia divergens Pohl no Pantanal. Rev. Bras. Eng. Agríc. Ambient. 2015, 19, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, W.J. Evaporation from Amazonian rain forest. Proc. R. Soc. 1988, 233, 321–346. [Google Scholar] [CrossRef]
- Almeida, A.C.; Soares, J.V. Comparação entre uso de água em plantações de eucalyptus grandis e floresta ombrófila densa (mata atlântica) na costa leste do Brasil. Rev. Árvore 2003, 27, 159–170. [Google Scholar] [CrossRef]
- Zuecco, G.; Penna, D.; Borga, M.; van Meerveld, H.J. A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. Hydrol. Process. 2016, 30, 1449–1466. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Q.; Zhu, X.; Li, Y.; Yu, G. Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: Patterns and causes. PLoS ONE 2014, 9, e98857. [Google Scholar] [CrossRef]
- Ahrends, H.E.; Lind, H.R.; Schween, J.H.; Crewell, S.; Stadler, A.; Rascher, U. Diurnal Dynamics of Wheat Evapotranspiration Derived from Ground-Based Thermal Imagery. Remote Sens. 2014, 6, 9775–9801. [Google Scholar] [CrossRef] [Green Version]
- Takagi, K.; Tsuboya, T.; Takahashi, H. Diurnal hysteresis of stomatal and bulk surface conductances in relation to vapor pressure deficit in a cool temperate wetland. Agric. For. Meteorol. 1998, 91, 177–191. [Google Scholar] [CrossRef]
- Bai, Y.; Zhu, G.; Su, Y.; Zhang, K.; Han, T.; Ma, J.; Wang, W.; Ma, T.; Feng, L. Hysteresis loops between canopy conductance of grapevines and meteorological variables in an oasis ecosystem. Agric. For. Meteorol. 2015, 214–215, 319–327. [Google Scholar] [CrossRef]
Depth * (cm) | Sand (%) | Clay (%) | Silt (%) | Field Capacity θFC (m3 m−3) | Permanent Wilting Point θWP (m3 m−3) | Macroporosity (m3 m−3) | Microporosity (m3 m−3) |
---|---|---|---|---|---|---|---|
Santa Maria | |||||||
05 | 47.12 | 16.90 | 35.97 | 0.34 | 0.12 | 0.10 | 0.36 |
10 | 42.85 | 20.09 | 37.05 | 0.31 | 0.11 | 0.12 | 0.33 |
25 | 40.03 | 22.61 | 37.36 | 0.24 | 0.12 | 0.13 | 0.35 |
45 | 34.36 | 32.70 | 32.94 | 0.35 | 0.13 | 0.13 | 0.37 |
75 | 26.47 | 43.71 | 29.82 | 0.41 | 0.21 | 0.12 | 0.42 |
100 | 28.81 | 40.06 | 31.13 | 0.41 | 0.16 | 0.08 | 0.42 |
110 | 17.45 | 34.28 | 48.27 | 0.40 | 0.26 | 0.05 | 0.40 |
125 | 17.74 | 27.95 | 54.31 | 0.37 | 0.25 | 0.08 | 0.41 |
145 | 14.94 | 30.65 | 54.41 | 0.42 | 0.17 | 0.05 | 0.43 |
Pedras Altas | |||||||
05 | 59.30 | 0.81 | 39.89 | 0.31 | 0.03 | 0.12 | 0.32 |
15 | 58.11 | 0.90 | 40.98 | 0.26 | 0.03 | 0.13 | 0.28 |
30 | 56.33 | 1.01 | 42.66 | 0.23 | 0.04 | 0.16 | 0.24 |
50 | 54.35 | 1.18 | 44.45 | 0.23 | 0.05 | 0.16 | 0.24 |
Biome | EF = LE/Rn | Reference |
---|---|---|
Pampa | 0.66 | This study, PAS site |
Pampa | 0.64 | This study, SMA site |
Amazon rainforest | 0.86 | Da Rocha et al. [13] |
Pantanal | 0.80 | Sanches et al. [15] |
Cerrado | 0.68 | Cabral et al. [17] |
Cerrado Denso (CD) | 0.48 | Giambelluca et al. [16] |
Campo Cerrado (CC) | 0.40 | Giambelluca et al. [16] |
Period | Site | ETact (mm d−1) | ETo (mm d−1) | |
---|---|---|---|---|
Autumn and Winter, AW | Santa Maria | 1.58 | 1.93 | |
Pedras Altas | 1.42 | 1.73 | ||
Spring and Summer, SS | Santa Maria | 3.15 | 3.83 | |
Pedras Altas | 3.68 | 3.74 | ||
Annual | 2014/2015 | Santa Maria | 2.56 | 2.89 |
Pedras Altas | 2.60 | 2.72 | ||
2015/2016 | Santa Maria | 2.16 | 2.79 | |
Pedras Altas | 2.49 | 2.82 | ||
Two-year period | Santa Maria | 2.36 | 2.84 | |
Pedras Altas | 2.56 | 2.76 |
Site | 2014/2015 | 2015/2016 | |
---|---|---|---|
ETact–VPD | SMA | 0.0764 | 0.0833 |
PAS | 0.0876 | 0.0842 | |
Average | 0.0829 ± 0.0047 | ||
ETact–Temperature | SMA | 0.0220 | 0.0229 |
PAS | 0.0228 | 0.0197 | |
Average | 0.0218 ± 0.0015 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubert, G.C.; Roberti, D.R.; Pereira, L.S.; Quadros, F.L.F.; Campos Velho, H.F.d.; Leal de Moraes, O.L. Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors. Water 2018, 10, 1864. https://doi.org/10.3390/w10121864
Rubert GC, Roberti DR, Pereira LS, Quadros FLF, Campos Velho HFd, Leal de Moraes OL. Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors. Water. 2018; 10(12):1864. https://doi.org/10.3390/w10121864
Chicago/Turabian StyleRubert, Gisele Cristina, Débora Regina Roberti, Luis Santos Pereira, Fernando L. F. Quadros, Haroldo Fraga de Campos Velho, and Osvaldo Luiz Leal de Moraes. 2018. "Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors" Water 10, no. 12: 1864. https://doi.org/10.3390/w10121864
APA StyleRubert, G. C., Roberti, D. R., Pereira, L. S., Quadros, F. L. F., Campos Velho, H. F. d., & Leal de Moraes, O. L. (2018). Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors. Water, 10(12), 1864. https://doi.org/10.3390/w10121864