Land Water-Storage Variability over West Africa: Inferences from Space-Borne Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geography
2.1.2. Climate
2.2. Datasets
2.2.1. GRACE-TWS Monthly Fields
2.2.2. Bivariate ENSO Time Series
2.2.3. Tropical Rainfall Measurement Mission Rainfall Products
2.2.4. Satellite Altimetry Data
2.2.5. Satellite Imagery Data
2.3. Methodology
2.3.1. Lake Surface Area and Height Changes
2.3.2. Lake-Induced TWS Changes
2.3.3. Droughts Characterization
2.3.4. Cross Wavelet Transform and Coherence
3. Results
3.1. Altimetry-Imagery Infered TWS Variations (LakeTWS)
3.1.1. Lake Surface Area Changes
3.1.2. Lake Kernel Function
3.2. GRACE-Derived TWS Variations
3.3. GRACE-Based Drought Characterization
3.4. Intercomparison Between GRACE-TWS and Rainfall, and NDVI, and BEST
3.4.1. Precipitation and TWS Changes (TWSC)
3.4.2. Vegetation Indices (NDVI), TWSC, and Rainfall
3.4.3. Co-Variability Studies of TWSC and Hydro-Climatic Variables
4. Discussions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Descroix, L.; Mahé, G.; Lebel, T.; Favreau, G.; Galle, S.; Gautier, E.; Olivry, J.C.; Albergel, J.; Amogu, O.; Cappelaere, B.; et al. Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. J. Hydrol. 2009, 375, 90–102. [Google Scholar] [CrossRef]
- Nicholson, S. On the question of the “recovery” of the rains in the West African sahel. J. Arid Environ. 2005, 63, 615–641. [Google Scholar] [CrossRef]
- Lebel, T.; Delclaux, F.; Le Barbé, L.; Polcher, J. From gcm scales to hydrological scales: Rainfall variability in West Africa. Stoch. Environ. Res. Risk Assess. 2000, 14, 275–295. [Google Scholar] [CrossRef]
- Xie, H.; Longuevergne, L.; Ringler, C.; Scanlon, B.R. Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrol. Earth Syst. Sci. 2012, 16, 3083–3099. [Google Scholar] [CrossRef]
- Amogu, O.; Descroix, L.; Yéro, K.S.; Le Breton, E.; Mamadou, I.; Ali, A.; Vischel, T.; Bader, J.-C.; Moussa, I.B.; Gautier, E.; et al. Increasing river flows in the sahel? Water 2010, 2, 170–199. [Google Scholar] [CrossRef]
- Conway, D.; Persechino, A.; Ardoin-Bardin, S.; Hamandawana, H.; Dieulin, C.; Mahé, G. Rainfall and water resources variability in Sub-Saharan Africa during the twentieth century. J. Hydrometeorol. 2009, 10, 41–59. [Google Scholar] [CrossRef]
- Redelsperger, J.-L.; Thorncroft, C.D.; Diedhiou, A.; Lebel, T.; Parker, D.J.; Polcher, J. African monsoon multidisciplinary analysis: An international research project and field campaign. Bull. Am. Meteorol. Soc. 2006, 87, 1739–1746. [Google Scholar] [CrossRef]
- Andam-Akorful, S.A.; Ferreira, V.G.; Ndehedehe, C.E.; Quaye-Ballard, J.A. An investigation into the freshwater variability in West Africa during 1979–2010. Int. J. Climatol. 2017, 37, 333–349. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J. Analysis of sahelian vegetation dynamics using noaa-avhrr ndvi data from 1981–2003. J. Arid Environ. 2005, 63, 596–614. [Google Scholar] [CrossRef]
- Per Skougaard, K.; Rasmus, F.; Silvia, H. A spatiotemporal analysis of climatic drivers for observed changes in sahelian vegetation productivity (1982–2007). Int. J. Geophys. 2011, 2011. [Google Scholar] [CrossRef]
- Forootan, E.; Kusche, J.; Loth, I.; Schuh, W.-D.; Eicker, A.; Awange, J.; Longuevergne, L.; Diekkrüger, B.; Schmidt, M.; Shum, C.K. Multivariate prediction of total water storage changes over West Africa from multi-satellite data. Surv. Geophys. 2014, 35, 913–940. [Google Scholar] [CrossRef] [Green Version]
- Andam-Akorful, S.A.; Ferreira, V.G.; Awange, J.L.; Forootan, E.; He, X.F. Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa. Int. J. Climatol. 2015, 35, 3132–3145. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Singh, V.P. Drought modeling—A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Bravar, L.; Kavvas, M.L. On the physics of droughts. I. A conceptual framework. J. Hydrol. 1991, 129, 281–297. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the african continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef]
- Nichol, J.E.; Abbas, S. Integration of remote sensing datasets for local scale assessment and prediction of drought. Sci. Total Environ. 2015, 505, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Ndehedehe, C.E.; Awange, J.L.; Corner, R.J.; Kuhn, M.; Okwuashi, O. On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta basin. Sci. Total Environ. 2016, 557–558, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.G.; Asiah, Z. An investigation on the closure of the water budget methods over volta basin using multi-satellite data. In Proceedings of the 3rd International Gravity Field Service (igfs), Shanghai, China, 30 June–6 July 2014; Jin, S., Barzaghi, R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 171–178. [Google Scholar]
- Ndehedehe, C.E.; Awange, J.L.; Kuhn, M.; Agutu, N.O.; Fukuda, Y. Analysis of hydrological variability over the Volta River basin using in-situ data and satellite observations. J. Hydrol. Reg. Stud. 2017, 12, 88–110. [Google Scholar] [CrossRef]
- Ni, S.; Chen, J.; Wilson, C.; Hu, X. Long-term water storage changes of Lake Volta from grace and satellite altimetry and connections with regional climate. Remote Sens. 2017, 9, 842. [Google Scholar] [CrossRef]
- Grippa, M.; Kergoat, L.; Frappart, F.; Araud, Q.; Boone, A.; de Rosnay, P.; Lemoine, J.M.; Gascoin, S.; Balsamo, G.; Ottlé, C.; et al. Land water storage variability over west africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, M.; Sheffield, J.; Siemann, A.L.; Fisher, C.K.; Liang, M.; Beck, H.E.; Wanders, N.; Maccracken, R.F.; Houser, P.R.; et al. A Climate Data Record (CDR) for the global terrestrial water. Earth Syst. Sci. 2018, 225194, 241–263. [Google Scholar] [CrossRef]
- Thomas, A.C.; Reager, J.T.; Famiglietti, J.S.; Rodell, M. A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 2014, 41, 1537–1545. [Google Scholar] [CrossRef]
- Sun, T.; Ferreira, V.; He, X.; Andam-Akorful, S. Water availability of São Francisco River Basin based on a space-borne geodetic sensor. Water 2016, 8, 213. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Montecino, H.D.C.; Yakubu, C.I.; Heck, B. Uncertainties of the gravity recovery and climate experiment time-variable gravity-field solutions based on three-cornered hat method. J. Appl. Remote Sens. 2016, 10, 015015. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Long, D.; Yang, Y.; Wada, Y.; Hong, Y.; Liang, W.; Chen, Y.; Yong, B.; Hou, A.; Wei, J.; Chen, L. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China’s Yangtze River Basin. Remote Sens. Environ. 2015, 168, 177–193. [Google Scholar] [CrossRef]
- Tropical Rainfall Measuring Mission (TRMM). TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree × 0.25 degree V7. Available online: https://disc.gsfc.nasa.gov/datacollection/TRMM_3B43_7.html (accessed on 15 March 2017).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The trmm multisatellite precipitation analysis (tmpa): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Andam-Akorful, S.A.; He, X.-F.; Xiao, R.-Y. Estimating water storage changes and sink terms in Volta Basin from satellite missions. Water Sci. Eng. 2014, 7, 5–16. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Gong, Z.; Andam-Akorful, S.A. Monitoring mass changes in the volta river basin using GRACE satellite gravity and trmm precipitation. Boletim de Ciências Geodésicas 2012, 18, 549–563. [Google Scholar] [CrossRef]
- Awange, J.L.; Ferreira, V.G.; Forootan, E.; Khandu; Andam-Akorful, S.A.; Agutu, N.O.; He, X.F. Uncertainties in remotely sensed precipitation data over Africa. Int. J. Climatol. 2016, 36, 303–323. [Google Scholar] [CrossRef]
- Birkett, C.; Reynolds, C.; Beckley, B.; Doorn, B. From research to operations: The usda global reservoir and lake monitor. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 19–50. [Google Scholar]
- Ričko, M.; Birkett, C.M.; Carton, J.A.; Crétaux, J.-F. Intercomparison and validation of continental water level products derived from satellite radar altimetry. J. Appl. Remote Sens. 2012, 6, 61710. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gao, H.; Naz, B.S. Monitoring reservoir storage in south asia from multisatellite remote sensing. Water Resour. Res. 2014, 50, 8927–8943. [Google Scholar] [CrossRef]
- Islam, A.S.; Bala, S.K.; Haque, M.A. Flood inundation map of Bangladesh using modis time-series images. J. Flood Risk Manag. 2010, 3, 210–222. [Google Scholar] [CrossRef]
- Gao, H.; Birkett, C.; Lettenmaier, D.P. Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Gao, F. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 2016, 185, 129–141. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res. Solid Earth 2002, 107, ETG 3-1–ETG 3-13. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Friesen, J.; van de Giesen, N.; Savenije, H.H.G. Hydroclimatology of the Volta River basin in West Africa: Trends and variability from 1901 to 2002. Phys. Chem. Earth Parts A/B/C 2006, 31, 1180–1188. [Google Scholar] [CrossRef]
- Owusu, K.; Waylen, P.; Qiu, Y. Changing rainfall inputs in the volta basin: Implications for water sharing in Ghana. GeoJournal 2008, 71, 201–210. [Google Scholar] [CrossRef]
- Moore, P.; Williams, S.D.P. Integration of altimetric lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003–2011. Water Resour. Res. 2014, 50, 9696–9720. [Google Scholar] [CrossRef]
- Tanaka, M.; Adjadeh, T.A.; Tanaka, S.; Sugimura, T. Water surface area measurement of Lake Volta using ssm/i 37-ghz polarization difference in rainy season. Adv. Space Res. 2002, 30, 2501–2504. [Google Scholar] [CrossRef]
- Yakubu, C.; Ferreira, V.; Asante, C. Towards the selection of an optimal global geopotential model for the computation of the long-wavelength contribution: A case study of Ghana. Geosciences 2017, 7, 113. [Google Scholar] [CrossRef]
- Longuevergne, L.; Wilson, C.R.; Scanlon, B.R.; Crétaux, J.F. GRACE water storage estimates for the middle east and other regions with significant reservoir and lake storage. Hydrol. Earth Syst. Sci. 2013, 17, 4817–4830. [Google Scholar] [CrossRef] [Green Version]
- Baur, O.; Sneeuw, N. Assessing greenland ice mass loss by means of point-mass modeling: A viable methodology. J. Geod. 2011, 85, 607–615. [Google Scholar] [CrossRef]
- Ferreira, V.; Gong, Z.; He, X.; Zhang, Y.; Andam‑Akorful, S. Estimating total discharge in the Yangtze River Basin using satellite-based observations. Remote Sens. 2013, 5, 3415–3430. [Google Scholar] [CrossRef]
- Crowley, J.W.; Mitrovica, J.X.; Bailey, R.C.; Tamisiea, M.E.; Davis, J.L. Annual variations in water storage and precipitation in the Amazon Basin. J. Geod. 2008, 82, 9–13. [Google Scholar] [CrossRef]
- Paeth, H.; Fink, A.H.; Pohle, S.; Keis, F.; Mächel, H.; Samimi, C. Meteorological characteristics and potential causes of the 2007 flood in Sub-Saharan Africa. Int. J. Climatol. 2011, 31, 1908–1926. [Google Scholar] [CrossRef]
- Nicholson, S.E. The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013, 2013, 32. [Google Scholar] [CrossRef]
- Tarhule, A. Damaging rainfall and flooding: The other sahel hazards. Clim. Chang. 2005, 72, 355–377. [Google Scholar] [CrossRef]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E. The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Sci. Rev. 2014, 136, 289–300. [Google Scholar] [CrossRef]
- Hassan, A.A.; Jin, S. Water cycle and climate signals in africa observed by satellite gravimetry. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 12149. [Google Scholar] [CrossRef]
- Andam-Akorful, S.A. A Multivariate Analysis of Terrestrial Water Storage Variations and Droughts over West Africa Using GRACE Gravity Data. Ph.D. Thesis, Hohai University, Nanjing, China, 2015. [Google Scholar]
Basin | No. of Events ≥3 Months | Time Frame of Each Event | Duration (Months) | Peak Magnitude (km3) | Average (km3) | Severity (km3/Month) |
---|---|---|---|---|---|---|
Volta | 4 | 2002-04 to 2005-05 | 39 | −50 (2002-09) | −16 | −624 |
2005-08 to 2008-07 | 36 | −30 (2005-12) | −17 | −510 | ||
2009-06 to 2009-08 | 3 | −3 (2009-06) | −2 | −6 | ||
2011-12 to 2012-02 | 3 | −4 (2012-02) | −2 | −6 | ||
Niger | 6 | 2002-04 to 2007-10 | 67 | −131 (2002-09) | −48 | −3216 |
2007-12 to 2008-04 | 5 | −23 (2008-04) | −19 | −95 | ||
2009-02 to 2009-10 | 9 | −50 (2009-02) | −17 | −153 | ||
2010-04 to 2010-06 | 3 | −29 (2010-06) | −12 | −36 | ||
2011-08 to 2011-10 | 3 | −18 (2011-09) | −11 | −33 | ||
2011-12 to 2012-03 | 4 | −28 (2012-02) | −14 | −56 | ||
Senegal | 5 | 2002-07 to 2003-11 | 17 | −43 (2002-12) | −16 | −272 |
2004-01 to 2005-06 | 18 | −25 (2004-10) | −9 | −162 | ||
2005-08 to 2008-06 | 35 | −19 (2006-09) | −10 | −350 | ||
2008-09 to 2009-09 | 12 | −8 (2009-07) | 5 | −60 | ||
2011-08 to 2011-11 | 4 | −6 (2011-11) | −4 | −16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, V.G.; Asiah, Z.; Xu, J.; Gong, Z.; Andam-Akorful, S.A. Land Water-Storage Variability over West Africa: Inferences from Space-Borne Sensors. Water 2018, 10, 380. https://doi.org/10.3390/w10040380
Ferreira VG, Asiah Z, Xu J, Gong Z, Andam-Akorful SA. Land Water-Storage Variability over West Africa: Inferences from Space-Borne Sensors. Water. 2018; 10(4):380. https://doi.org/10.3390/w10040380
Chicago/Turabian StyleFerreira, Vagner G., Zibrila Asiah, Jia Xu, Zheng Gong, and Samuel A. Andam-Akorful. 2018. "Land Water-Storage Variability over West Africa: Inferences from Space-Borne Sensors" Water 10, no. 4: 380. https://doi.org/10.3390/w10040380
APA StyleFerreira, V. G., Asiah, Z., Xu, J., Gong, Z., & Andam-Akorful, S. A. (2018). Land Water-Storage Variability over West Africa: Inferences from Space-Borne Sensors. Water, 10(4), 380. https://doi.org/10.3390/w10040380