Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region
Abstract
:1. Introduction
2. Methods
2.1. Model Introduction
2.2. Study Area
2.3. Selection of GCMs and GHG Scenarios
2.4. Data Introduction
3. Results
3.1. Model Calibration and Validation
3.2. Climate Change within the Two Watersheds
3.3. Streamflow and Sediments Response to Climate Change
3.4. TP Losses Response to Climate Change
3.5. Nitrate Losses Response to Climate Change
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Watson, S.B.; Ridal, J.; Boyer, G.L. Taste and odour and cyanobacterial toxins: Impairment, prediction, and management in the Great Lakes. Can. J. Fish. Aquat. Sci. 2008, 65, 1779–1796. [Google Scholar] [CrossRef]
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu, I.; et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef] [PubMed]
- Seilheimer, T.S.; Zimmerman, P.L.; Stueve, K.M.; Perry, C.H. Landscape-scale modeling of water quality in Lake Superior and Lake Michigan watersheds: How useful are forest-based indicators? J. Great Lakes Res. 2013, 39, 211–223. [Google Scholar] [CrossRef]
- Cherkauer, K.A.; Sinha, T. Hydrologic impacts of projected future climate change in the Lake Michigan region. J. Great Lakes Res. 2010, 36, 33–50. [Google Scholar] [CrossRef]
- Trapp, R.J.; Diffenbaugh, N.S.; Brooks, H.E.; Baldwin, M.E.; Robinson, E.D.; Pal, J.S. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA 2007, 104, 19719–19723. [Google Scholar] [CrossRef]
- Hayhoe, K.; VanDorn, J.; Croley II, T.; Schlegal, N.; Wuebbles, D. Regional climate change projections for Chicago and the US Great Lakes. J. Great Lakes Res. 2010, 36, 7–21. [Google Scholar] [CrossRef]
- Jennings, E.; Allott, N.; Pierson, D.C.; Schneiderman, E.M.; Lenihan, D.; Samuelsson, P.; Taylor, D. Impacts of climate change on phosphorus loading from a grassland catchment: Implications for future management. Water Res. 2009, 43, 4316–4326. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, M.R.; Nearing, M.A.; Vining, R.C.; Southworth, J.; Pfeifer, R.A. Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena 2005, 61, 165–184. [Google Scholar] [CrossRef]
- Kling, G.W.; Hayhoe, K.; Johnson, L.B.; Magnuson, J.J.; Polasky, S.; Robinson, S.K.; Shuter, B.J.; Wander, M.M.; Wuebbles, D.J.; Zak, D.R. (Eds.) Confronting Climate Change in the Great Lakes Region: Impacts on Our Communities and Ecosystems; UCS Publications: Cambridge, MA, USA, 2003. [Google Scholar]
- Gu, C.; Riley, W.J. Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling-a modeling analysis. J. Contam. Hydrol. 2010, 112, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Stouffer, R.J.; Broccoli, A.J.; Delworth, T.L.; Dixon, K.W.; Gudgel, R.; Held, I.; Hemler, R.; Knutson, T.; Lee, H.-C.; Schwarzkopf, M.D.; et al. GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Clim. 2006, 19, 723–740. [Google Scholar] [CrossRef]
- Verma, S.; Bhattarai, R.; Bosch, N.S.; Cooke, R.C.; Kalita, P.K.; Markus, M. Climate change impacts on flow, sediments and nutrient export in a Great Lakes watershed using SWAT. Clean Soil Air Water 2015, 11, 1464–1474. [Google Scholar] [CrossRef]
- Sinha, T.; Cherkauer, K.A. Impacts of future climate change on soil frost in the Midwestern United States. J. Geophys. Res. 2010, 115, 1–16. [Google Scholar] [CrossRef]
- McCool, D.K.; Pannkuk, C.D.; Saxton, K.E.; Kalita, P.K. Winter runoff and erosion on Northwestern USA cropland. Int. J. Sediment Res. 2000, 15, 149–161. [Google Scholar]
- Blackburn, W.H.; Pierson, F.B.; Seyfried, M.S. Spatial and temporal influence of soil frost on infiltration and erosion of Sagebrush rangelands. Water Resour. Bull. 1990, 26, 991–997. [Google Scholar] [CrossRef]
- Cousino, L.K.; Becker, R.H.; Zmijewski, K.A. Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. J. Hydrol. Reg. Stud. 2015, 4, 762–775. [Google Scholar] [CrossRef]
- Crossman, J.; Futter, M.N.; Oni, S.K.; Whitehead, P.G.; Jin, L.; Butterfield, D.; Baulch, H.M.; Dillon, P.J. Impacts of climate change on hydrology and water quality: Future proofing management strategies in the Lake Simcoe watershed, Canada. J. Great Lakes Res. 2013, 39, 19–32. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcesniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T. Effects of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland. Water 2017, 9, 156. [Google Scholar] [CrossRef]
- Kerkhoven, E.; Gan, T.Y. Differences and sensitivities in potential hydrologic impact of climate change to regional-scale Athabasca and Fraser River basins of the leeward and windward sides of the Canadian Rocky Mountains respectively. Clim. Chang. 2011, 106, 583–607. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Sci. Total Environ. 2017, 601, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Dadson, S.; Irvine, B.; Kirkby, M. Effects of climate change on soil erosion: Estimates using newly-available regional climate model data at a pan-European scale. Geophy Res. Abstr. 2010, 12, 7047. [Google Scholar]
- Eum, H.I.; Dibike, Y.; Prowse, T. Climate induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada. J. Hydrol. 2017, 544, 327–342. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Wang, J.Y. Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate. Sci. Total Environ. 2018, 625, 1030–1045. [Google Scholar] [CrossRef]
- Wang, L.; Flanagan, D.C.; Cherkauer, K.A. Development of a coupled water quality model. Trans. ASABE 2017, 60, 1153–1170. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Nearing, M.A. (Eds.) USDA—Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation; NSERL Report No. 10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995.
- Flanagan, D.C.; Gilley, J.E.; Franti, T.G. Water Erosion Prediction Project (WEPP): Development history, model capabilities, and future enhancements. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 1603–1612. [Google Scholar] [CrossRef]
- Nicks, A.D.; Lane, L.J. Weather generator. In USDA-Water Erosion Prediction Project: Hillslope Profile Model Documentation; NSERL Report No. 2; Lane, L.J., Nearing, M.A., Eds.; USDA-ARS, National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1989. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.; Soil, L. Water Assessment Tool Input/Output File Document Version 2009; Tech. Report No 365; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Särndal, C.-E. Stratified Sampling. In Model Assisted Survey Sampling; Springer: New York, NY, USA, 2003; pp. 100–109. ISBN 0-387-40620-4. [Google Scholar]
- Guerra, L. Now that ArcGIS 10.1 is Shipping. ArcGIS Resource Center Blog. ESRI. Retrieved 25 June 2012. Available online: https://blogs.esri.com/esri/arcgis/2012/06/19/now-that-arcgis-10-1-is-shipping/ (accessed on 3 April 2018).
- Wuebbles, D.; Meehl, G.; Hayhoe, K.; Karl, T.R.; Kunkel, K.; Santer, B.; Wehner, M.; Colle, B.; Fischer, E.M.; Fu, R.; et al. CMIP5 climate model analyses: Climate extremes in the United States. In Climate Change 2013: The Physical Science Basis. Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC); 5th Assessment Report (AR5); Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University: Cambridge, UK, 2013. [Google Scholar]
- Mohammed, I.N.; Bomblies, A.; Wemple, B.C. The use of CMIP5 data to simulate climate change impacts on flow regime within the Lake Champlain Basin. J. Hydrol. Reg. Stud. 2015, 3, 160–186. [Google Scholar] [CrossRef]
- Duan, W.L.; He, B.; Takara, K.; Luo, P.; Nover, D.; Netranada, S.; Yamashaki, Y. Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere 2013, 93, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cherkauer, K.A.; Flanagan, D.C. Impacts of climate change on soil erosion in the Great Lakes region. Water 2018. in review. [Google Scholar]
- Bhat, K.B.; Haran, M.; Terando, A.; Keller, K. Climate projections using Bayesian model averaging and space-time dependence. J. Agric. Biol. Environ. Stat. 2011, 16, 606–628. [Google Scholar] [CrossRef]
- Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; et al. GFDL’s CM2global coupled climate models. Part I: Formulation and simulation characteristics. J. Clim. 2006, 19, 643–674. [Google Scholar] [CrossRef]
- Pope, V.D.; Gallani, M.L.; Rowntree, P.R.; Stratton, R.A. The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim. Dyn. 2000, 16, 123–146. [Google Scholar] [CrossRef]
- Mao, D.Z.; Cherkauer, K.A. Impacts of land—Use change on hydrologic responses in the Great Lakes region. J. Great Lakes Res. 2009, 374, 71–82. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Beven, K.J.; Binley, A. The future of distributed hydrological models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Bosch, N.S.; Evans, M.A.; Scavia, D.; Allan, J.D. Interacting effects of climate change and agricultural BMPs on nutrient runoff. J. Great Lakes Res. 2014, 40, 581–589. [Google Scholar] [CrossRef]
- Luo, P.; He, B.; Chaff, P.L.B.; Nover, D.; Takara, K.; Rozainy, M.M. Statistical analysis and estimation of annual suspended sediments of major rivers in Japan. Environ. Sci. Proc. Impacts 2015, 15, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.N.S.; Donner, S.D. Climate change impacts on streamflow availability for the Athabasca Oil Sands. Clim. Chang. 2015, 13, 651–663. [Google Scholar] [CrossRef]
- Chaubey, I.; Chiange, L.; Gitau, M.W.; Mohamed, S. Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. J. Soil Water Conserv. 2010, 65, 424–437. [Google Scholar] [CrossRef]
- Robertson, D.M.; Saad, D.A.; Christiansen, D.E.; Lorenz, D.J. Simulated impacts of climate change on phosphorus loading to Lake Michigan. J. Great Lakes Res. 2016, 42, 536–548. [Google Scholar] [CrossRef]
- Mannaert, C.M.; Gabriels, D. A probabilistic approach for predicting rainfall soil erosion losses in semiarid areas. Catena 2000, 40, 403–420. [Google Scholar] [CrossRef]
- Lee, J.L.; Phillips, D.L.; Dodson, R.F. Sensitivity of the US Corn Belt to climate change and elevated CO2: II. Soil erosion and organic carbon. Agric. Syst. 1996, 52, 503–521. [Google Scholar] [CrossRef]
- Walker, R.R. Climate change assessment at a watershed scale. In Proceedings of the Water and Environment Association of Ontario Conference, Toronto, ON, Canada, 12 April 2001. [Google Scholar]
- Wang, Z.; Qi, Z.M.; Xue, L.; Bukovsky, M.S.; Helmers, M.J. Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field. Clim. Chang. 2015, 129, 323–335. [Google Scholar] [CrossRef]
- Kandel, D.D.; Western, A.W.; Grayson, R.B.; Turral, H.N. Process parameterization and temporal scaling in surface runoff and erosion modeling. Hydrol. Process. 2004, 18, 1423–1446. [Google Scholar] [CrossRef]
- Smith, D.R.; Owens, P.R.; Leytem, A.B.; Warnemuende, E.A. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event. Environ. Pollut. 2007, 147, 131–137. [Google Scholar] [CrossRef] [PubMed]
Field Management | Green Lake Watershed | Walworth Watershed | ||
---|---|---|---|---|
Crop | Corn | Soybeans | Corn | Soybeans |
Planting | 10 May | 25 May | 10 May | 25 May |
Harvesting | 10 October | 30 Septmber | 6 October | 7 October |
Tillage | Chisel plow 25 April | No till at planting | Chisel plow 25 April | No till at planting |
Offset disk plow at planting 9 May | Offset disk plow at planting 9 May | |||
Fertilizer Application | Green Lake Watershed | Walworth Watershed | ||
Nitrogen fertilizer | Urea 46%(165 kg/ha)/Spring corn | Urea 46%(165 kg/ha)/Spring corn | ||
Phosphorus Fertilizer | P2O5 (67 kg/ha)---corn P2O5 (56 kg/ha)---soy bean Fall applied | P2O5 (67 kg/ha)---corn P2O5 (56 kg/ha)---soy bean Fall applied |
Green Lake Watershed | Calibration | Validation | ||||
R2 | NSE | PBIAS | R2 | NSE | PBIAS | |
Streamflow | 0.63 | 0.55 | 19.67% | 0.95 | 0.66 | 14.27% |
TP | 0.66 | 0.50 | 2.97% | 0.82 | 0.69 | −18.12% |
NO3-N | 0.98 | 0.72 | 1% | 0.98 | 0.77 | 6% |
Walworth Watershed | Calibration | Validation | ||||
R2 | NSE | PBIAS | R2 | NSE | PBIAS | |
Streamflow | 0.73 | 0.57 | 7.50% | 0.73 | 0.57 | 6.0% |
TP | 0.75 | 0.66 | 17.79% | 0.79 | 0.54 | 16.29% |
NO3-N | 0.98 | 0.72 | 1% | 0.98 | 0.77 | 6% |
Green Lake Watershed | Δ Annual Precipitation (%) | Δ Air Temperature (°C) | ||||
A2 | A1B | B1 | A2 | A1B | B1 | |
Early century | 9.3 | 4.0 | 6.9 | 1.2 | 0.9 | 0.8 |
Middle century | 18.1 | 9.7 | 4.4 | 2.8 | 3.0 | 2.5 |
Late century | 20.7 | 11.2 | 11.6 | 4.1 | 3.5 | 2.5 |
Walworth Watershed | Δ Annual Precipitation (%) | Δ Air Temperature (°C) | ||||
A2 | A1B | B1 | A2 | A1B | B1 | |
Early century | 40.1 | 38.3 | 43.1 | 0.2 | 0.4 | −0.1 |
Middle century | 8.4 | 0.1 | −2.6 | 1.8 | 1.1 | 1.2 |
Late century | 12.4 | 2.6 | 5.2 | 4.2 | 3.4 | 1.9 |
Green Lake Watershed | Δ Extreme Precipitation Intensity (%) | Δ Extreme Precipitation Frequency (%) | ||||
A2 | A1B | B1 | A2 | A1B | B1 | |
Early century | 13.5 | 5.6 | 8.1 | 10.5 | 5.5 | 7.9 |
Middle century | 19.0 | 4.2 | 3.6 | 18.4 | 7.9 | 0.00 |
Late century | 22.8 | 13.5 | 10.2 | 26.3 | 15.8 | 10.5 |
Walworth Watershed | Δ Extreme Precipitation Intensity (%) | Δ Extreme Precipitation Frequency (%) | ||||
A2 | A1B | B1 | A2 | A1B | B1 | |
Early century | 12.5 | 11.4 | 9.9 | 14.2 | 14.3 | 12.0 |
Middle century | 15.1 | 8.1 | 3.6 | 17.7 | 13.4 | 4.7 |
Late century | 21.2 | 15.8 | 8.5 | 21.1 | 17.1 | 16.4 |
Δ FT Cycles (%) | Green Lake Watershed | Walworth Watershed | ||||
---|---|---|---|---|---|---|
A2 | A1B | B1 | A2 | A1B | B1 | |
Early century | 3.7 | −49.5 | 1.6 | 7.5 | 2.2 | 8.1 |
Middle century | 8.8 | −32.6 | 2.0 | 29.4 | 27.8 | −13.6 |
Late century | −0.7 | 0.00 | 0.5 | 8.5 | 12.7 | 36.7 |
Green Lake Watershed | A2 | A1B | B1 | |||
---|---|---|---|---|---|---|
Δ Streamflow | mm | % | mm | % | mm | % |
Early century | 20.5 | 10.0 | 25.9 | 13.3 | 28.6 | 14.9 |
Middle century | 79.7 | 39.1 | 80.0 | 41.0 | 64.6 | 33.7 |
Late century | 102.3 | 50.2 | 105.0 | 53.9 | 92.8 | 48.3 |
Δ Soil loss | ton/ha | % | ton/ha | % | ton/ha | % |
Early century | 0.7 | 54.7 | 0.3 | 20.6 | 0.4 | 43.4 |
Middle century | 0.9 | 69.9 | 0.6 | 45.1 | 0.6 | 57.8 |
Late century | 1.3 | 103.3 | 0.9 | 74.3 | 0.9 | 92.2 |
Walworth Watershed | A2 | A1B | B1 | |||
Δ Streamflow | mm | % | mm | % | mm | % |
Early century | 54.9 | 40.7 | 33.8 | 24.3 | 43.7 | 31.2 |
Middle century | 60.2 | 44.7 | 45.0 | 31.9 | 47.2 | 33.7 |
Late century | 55.9 | 41.5 | 47.5 | 33.7 | 47.0 | 33.6 |
Δ Soil loss | ton/ha | % | ton/ha | % | ton/ha | % |
Early century | 1.0 | 41.2 | 0.8 | 36.6 | 0.8 | 35.0 |
Middle century | 1.1 | 45.7 | 1.0 | 49.3 | 0.9 | 40.0 |
Late century | 1.3 | 54.4 | 0.7 | 35.2 | 1.2 | 52.1 |
Green Lake Watershed | A2 | A1B | B1 | |||
---|---|---|---|---|---|---|
ΔTP | kg/ha | % | kg/ha | % | kg/ha | % |
Early century | 0.5 | 42.3 | 0.3 | 28.3 | 0.4 | 38.4 |
Middle century | 0.6 | 53.9 | 0.5 | 44.1 | 0.5 | 41.1 |
Late century | 1.0 | 89.0 | 0.8 | 75.2 | 0.8 | 71.5 |
ΔNO3-N | kg/ha | % | kg/ha | % | kg/ha | % |
Early century | 0.1 | 5.1 | 0.1 | 3.9 | 0.1 | 4.6 |
Middle century | 0.7 | 26.5 | 1.0 | 38.1 | 0.8 | 29.8 |
Late century | 0.5 | 17.5 | 0.03 | 1.1 | 0.7 | 27.8 |
Walworth Watershed | A2 | A1B | B1 | |||
ΔTP | kg/ha | % | kg/ha | % | kg/ha | % |
Early century | 1.2 | 31.1 | 1.0 | 27.2 | 1.0 | 25.0 |
Middle century | 3.1 | 81.1 | 3.3 | 87.5 | 2.8 | 71.8 |
Late century | 4.2 | 108.9 | 3.7 | 96.4 | 4.2 | 105.9 |
ΔNO3-N | kg/ha | % | kg/ha | % | kg/ha | % |
Early century | 0.7 | 40.6 | 1.2 | 95.5 | 1.2 | 70.8 |
Middle century | 0.2 | 12.4 | 0.6 | 44.5 | 0.1 | 8.0 |
Late century | 0.7 | 40.6 | 0.7 | 52.5 | 1.2 | 68.2 |
Green Lake Watershed | TP | NO3-N | ||||
---|---|---|---|---|---|---|
A2 | A1B | B1 | A2 | A1B | B1 | |
Early century | C. * | C. | C. | P. * | P. | P. |
Middle century | C. | C. | C. | C. | C. | C. |
Late century | C. | C. | C. | E. * | E. | E. |
Walworth Watershed | TP | NO3-N | ||||
A2 | A1B | B1 | A2 | A1B | B1 | |
Early century | P. | P. | P. | P. | P. | P. |
Middle century | E. | E. | E. | E. | E. | E. |
Late century | C. | C. | C. | C. | C. | C. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Flanagan, D.C.; Wang, Z.; Cherkauer, K.A. Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region. Water 2018, 10, 442. https://doi.org/10.3390/w10040442
Wang L, Flanagan DC, Wang Z, Cherkauer KA. Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region. Water. 2018; 10(4):442. https://doi.org/10.3390/w10040442
Chicago/Turabian StyleWang, Lili, Dennis C. Flanagan, Zhonggen Wang, and Keith A. Cherkauer. 2018. "Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region" Water 10, no. 4: 442. https://doi.org/10.3390/w10040442