Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. The SWAT Hydrological Model
2.3. Input Datasets
- Digital Elevation Model (DEM): The hydrologically conditioned HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) digital elevation model (DEM) developed by the World Wildlife Fund (WWF) and the United States Geological Survey (USGS) based on the NASA SRTM (Shuttle Radar Topographic Mission) was used for streamflow delineation. HydroSHEDS is available in 3 and 15 arc-second resolutions (approximately 90 and 500 m) [37,38]. In this study, sub-basins were generated using the 500 m version.
- Land use and land cover: The Comité permanent Inter-Etats de Lutte contre la Sécheresse dans le Sahel (CILSS) Landscapes of West Africa land use and land cover raster dataset of the year 2013 was used as a basis for developing the land use layer required by SWAT. Maps are also available for the years 1975 and 2000 at a resolution of 2 km. The maps were created using local information and remote sensing data in cooperation with US Aid and USGS [30]. Since no data is included for the country of Cameroon, nor north of the 18th parallel in Mauritania and Mali and north of the 15.5th parallel in Niger, missing data was replaced using the European Space Agency (ESA) Globcover 2.3 dataset depicting the land use of the year 2009 in a 300 m resolution [39]. Land use classes were converted to default SWAT classes. It is unclear whether SWAT allows to realistically simulate plant growth under tropical conditions due to its implemented heat unit growth model [40,41,42]. In our study, the management database was adapted by setting fixed plant and harvest dates corresponding to onset and end of rainy season. When compared to MODerate-resolution Imaging Spectroradiometer (MODIS) MOD 15A2 leaf area index (LAI) estimates produced by NASA [43], SWAT LAI reaches a Pearson’s r of 0.62, whereas without management modifications this value drops to −0.47.
- Soil: The Harmonized World Soil Database (HWSD) version 1.2 produced by the Food and Agriculture Organization of the United Nations, the International Institute for Applied Systems Analysis, ISRIC World Soil Information, the Institute of Soil Science—Chinese Academy of Sciences and the European Commission’s Joint Research Centre (JRC) in 2012 was used to generate the soil data needed in SWAT. The HWSD supplies a raster map and database containing several soil physical and chemical parameters for a top- and subsoil layer [44]. Missing parameters were estimated from soil texture using pedotransfer functions [45]. The HWSD and its predecessors have been used for SWAT simulations in Africa, the Middle East, and Europe, among others [1,11,12,36,46,47,48].
- Climate: In a previous study, ten precipitation datasets were analyzed for six sub-basins in the study area [23]. It was concluded that the Climate Prediction Center Morphing Technique (CMORPH) version 1 CRT produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre (NOAA-CPC) performed best. CMORPHv1 CRT is a global precipitation analysis algorithm, including satellite infrared and microwave precipitation estimates as well as rain gauge information for bias correction. Precipitation estimates are available from 1998 onwards at a resolution of 0.25° [49,50]. Minimum and maximum 2 m daily temperature data were compiled from the NASA MERRA 2 reanalysis dataset. Inputs from both satellite and ground data are included at a resolution of 0.625° × 0.5° [51]. While SWAT-ready climate input files based on the National Centers for Environmental Prediction (NCEP) climate forecast system reanalysis data (CFSR) [52] are readily available, as discovered in Poméon et al. [23], CFSR precipitation information compares worse to other products in the region. No other climate data were necessary as the authors selected Hargreaves as the potential evapotranspiration method.
- Discharge and reservoirs: Discharge data used in this study was obtained from the German Global Runoff Data Center (GRDC) in Koblenz, the French AMMA-CATCH regional observing system, as well as through personal communication with local agencies. Discharge stations and their temporal coverage (without gaps) are depicted in Figure 1 and summarized in Table 1. The 12 largest reservoirs in the study area where downstream discharge observations are available were included in the model. Reservoir information was provided by the Global Water System Project (GWSP) Global Reservoir and Dam (GRanD) database version 1.1 created by Lehner et al. [53]. Missing storage volumes information was approximated as proposed by Schuol et al. [1]. Lake Volta was not modeled due to insufficient data being available.
2.4. Multi-Objective Validation Datasets
- Actual evapotranspiration (ETa): Data was extracted from the MODIS MOD 16 dataset supplied by NASA, available at a 1 km2 spatial- and 8-day or monthly temporal resolution. ETa is calculated based on the Penman-Monteith equation using ground-based and remote sensing datasets. The algorithm includes vapor pressure deficit, leaf area index, enhanced vegetation index and soil evaporation [54,55].
- Soil moisture: ESA Climate Change Initiative (CCI) 3.2 soil moisture (SM) retrievals were used to validate the soil moisture dynamics simulated by SWAT. The product is generated by blending passive and active microwave soil moisture retrievals generated by C-band scatterometers and multi-frequency radiometers on multiple spacecraft. Daily data is available at a resolution of 0.25 degrees but covering only the upper few cm of the soil [56,57,58].
- Total water storage (TWS): Gravity Recovery And Climate Experiment (GRACE) TWS retrievals were used for further model validation. The twin satellite GRACE mission has been measuring temporal and spatial variations in the Earth’s gravity field since 2002. GRACE consists of two identical satellites on the same near-circular orbit. The dual one-way K-band microwave ranging system observes the distance between the two satellites. Changes in the distance in conjunction with complementary tracking data are used to derive monthly gravity fields, which, subsequently, are converted to mass changes in terms of equivalent water height according to Wahr et al. [59]. In this study, we used the ITSG-Grace2016 time series provided by the Institute of Geodesy (IfG) at Technical University (TU) Graz as sets of spherical harmonic coefficients up to degree and order 90. As GRACE does not measure geocenter variations, degree 1 coefficients were replaced by the time series provided by Rietbroek et al. [60,61]. The c20 coefficient, which is corrupted by aliasing effects, was replaced by results from satellite laser ranging [62]. GRACE observes the integral sum of all mass variations in hydrosphere, atmosphere, biosphere, oceans and mass variations inside of the earth. Gravity field solutions from ITSG-Grace2016 are already corrected for tides (ocean, earth and pole tides) and non-tidal atmospheric and oceanic effects. Trends from glacial isostatic adjustment are about zero in the study region. Therefore, the spherical harmonic coefficients from ITSG-Grace2016 primarily reflect variations in the terrestrial water storage. As GRACE-derived gravity solutions are contaminated with correlated noise leading to the characteristic striping patterns in the north-nouth direction, the monthly fields were smoothed using the anisotropic DDK3 filter [63]. Filtering implies attenuation of the signal and further distortion, known as leakage effect. Therefore, TWS time series derived for the three target areas via spatial averaging were rescaled using the scaling factor approach [64]. Here, scaling factors were derived from five global hydrological models for each target area separately [65]. All computations are accompanied by a thorough error propagation, which starts from the full error covariance matrices of the spherical harmonic coefficients and results into errors for the rescaled TWS time series. Since Lake Volta was not modeled in SWAT, the lake signal was computed using lake height variations and an area varying between 4450 km2 and 9970 km2 [66,67] and subsequently subtracted from the GRACE estimates.
2.5. Model Setup and Calibration/Validation
2.6. Multi-Objective Validation
3. Results
3.1. Calibration and Validation Results
3.2. Multi-Objective Validation Results
4. Discussion
4.1. Model Calibration/Validation Discussion
4.2. Multi-Objective Validation Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Hollinger, F.; Staatz, J.M. Agricultural Growth in West Africa Market and Policy Drivers. Avalible online: https://reliefweb.int/report/world/agricultural-growth-west-africa-market-and-policy-drivers (accessed on 9 April 2018).
- Jalloh, A.; Faye, M.D.; Roy-Macauley, H.; Sérémé, P.; Zougmoré, R.; Thomas, T.S.; Nelson, G.C. Overview. In West African Agriculture and Climate Change; Jalloh, A., Nelson, G.C., Thomas, T.S., Zougmoré, R., Roy-Macauley, H., Eds.; International Food Policy Research Institute: Washington, DC, USA, 2013. [Google Scholar]
- Andersen, J.; Refsgaard, J.C.; Jensen, K.H. Distributed hydrological modelling of the Senegal River Basin—Model construction and validation. J. Hydrol. 2001, 247, 200–214. [Google Scholar] [CrossRef]
- Bormann, H. Regional hydrological modelling in Benin (West Africa): Uncertainty issues versus scenarios of expected future environmental change. Phys. Chem. Earth 2005, 30, 472–484. [Google Scholar] [CrossRef]
- Wagner, S.; Kunstmann, H.; Bárdossy, A.; Conrad, C.; Colditz, R.R. Water balance estimation of a poorly gauged catchment in West Africa using dynamically downscaled meteorological fields and remote sensing information. Phys. Chem. Earth 2009, 34, 225–235. [Google Scholar] [CrossRef]
- Fujihara, Y.; Yamamoto, Y.; Tsujimoto, Y.; Sakagami, J. Discharge Simulation in a Data-Scarce Basin Using Reanalysis and Global Precipitation Data: A Case Study of the White Volta Basin. J. Water Resour. Prot. 2014, 1316–1325. [Google Scholar] [CrossRef]
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Li, K.Y.; Coe, M.T.; Ramankutty, N. Investigation of hydrological variability in West Africa using land surface models. J. Clim. 2005, 18, 3173–3188. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Adv. Geosci. 2006, 9, 137–143. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Yang, H.; Srinivasan, R.; Zehnder, A.J.B. Modeling blue and green water availability in Africa. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef]
- Xie, H.; Longuevergne, L.; Ringler, C.; Scanlon, B.R. Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrol. Earth Syst. Sci. 2012, 16, 3083–3099. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C. Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecol. Model. 2006, 201, 301–311. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci. 2011, 15, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Koutsouris, A.J.; Chen, D.; Lyon, S.W. Comparing global precipitation data sets in eastern Africa: A case study of Kilombero Valley, Tanzania. Int. J. Climatol. 2016, 36, 2000–2014. [Google Scholar] [CrossRef]
- Adjei, K.A.; Ren, L.; Appiah-Adjei, E.K.; Kankam-Yeboah, K.; Agyapong, A.A. Validation of TRMM Data in the Black Volta Basin of Ghana. J. Hydrol. Eng. 2012, 17, 647–654. [Google Scholar] [CrossRef]
- Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Forootan, E.; Kusche, J.; Loth, I.; Schuh, W.D.; Eicker, A.; Awange, J.; Longuevergne, L.; Diekkrüger, B.; Schmidt, M.; Shum, C.K. Multivariate Prediction of Total Water Storage Changes over West Africa from Multi-Satellite Data. Surv. Geophys. 2014, 35, 913–940. [Google Scholar] [CrossRef] [Green Version]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of Satellite-Based Precipitation Products Over Sparsely-Gauged African River Basins. J. Hydrometeorol. 2012. [Google Scholar] [CrossRef]
- Gosset, M.; Viarre, J.; Quantin, G.; Alcoba, M. Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Q. J. R. Meteorol. Soc. 2013, 139, 923–940. [Google Scholar] [CrossRef]
- Poméon, T.; Jackisch, D.; Diekkrüger, B. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. J. Hydrol. 2017, 547, 222–235. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Trentmann, J.; Fink, A.H.; Ahrens, B. Evaluating satellite-based diurnal cycles of precipitation in the African tropics. J. Appl. Meteorol. Climatol. 2016, 55, 23–39. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M.; Gebremichael, L.T.; Bayissa, Y.A. Evaluation of High-Resolution Satellite Rainfall Products through Streamflow Simulation in a Hydrological Modeling of a Small Mountainous Watershed in Ethiopia. J. Hydrometeorol. 2012, 13, 338–350. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Yen, H.; Collick, A.S.; Tilahun, S.A.; Langan, S.; Steenhuis, T.S. Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia. Catena 2017, 152, 242–251. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Maathuis, B.; Adem, A.A.; Demissie, S.S.; Langan, S.; Steenhuis, T.S. Comparison of TRMM, MPEG and CFSR rainfall estimation with the ground observed data for the Lake Tana Basin, Ethiopia. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 8013–8038. [Google Scholar] [CrossRef]
- Pombo, S.; de Oliveira, R.P.; Mendes, A. Validation of remote-sensing precipitation products for Angola. Meteorol. Appl. 2015, 22, 395–409. [Google Scholar] [CrossRef]
- Awange, J.L.; Ferreira, V.G.; Forootan, E.; Khandu; Andam-Akorful, S.A.; Agutu, N.O.; He, X.F. Uncertainties in remotely sensed precipitation data over Africa. Int. J. Climatol. 2016, 36, 303–323. [Google Scholar] [CrossRef]
- Cotillon, S.E.; Tappan, G.G. Landscapes of West Africa—A Window on a Changing World; U.S. Geological Survey EROS: Garretson, SD, USA, 2016.
- Fink, A.H.; Christoph, M.; Born, K.; Bruecher, T.; Piecha, K.; Pohle, S.; Schulz, O.; Ermert, V. Climate. In Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa; Speth, P., Christoph, M., Diekkrüger, B., Eds.; Springer: Heidelberg, Germany, 2010; pp. 54–58. [Google Scholar]
- Sebastian, K. Agro-Ecological Zones of Africa; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Gessner, U.; Niklaus, M.; Kuenzer, C.; Dech, S. Intercomparison of Leaf Area Index Products for a Gradient of Sub-Humid to Arid Environments in West Africa. Remote Sens. 2013, 5, 1235–1257. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; VanLiew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Srinivasan, R.; Ramanarayanan, T.S.; Arnold, J.G.; Bednarz, S.T. Large area hydrologic modeling and assessment part II: Model application. J. Am. Water Resour. Assoc. 1998, 34, 91–101. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe : Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. HydroSHEDS Technical Documentation Version 1.2; World Wildlife Fund US: Washington, DC, USA, 2013. [Google Scholar]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos (Washington DC) 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; Van Bogaert, E.; Arino, O.; Kalogirou, V.; Perez, J. GLOBCOVER 2009 Products Description and Validation Report; Université Catholique de Louvain: Louvain, Belgium; European Space Agency: Paris, France, 2011. [Google Scholar]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Alemayehu, T.; van Griensven, A.; Bauwens, W. Improved SWAT vegetation growth module for tropical ecosystem. Hydrol. Earth Syst. Sci. Discuss. 2017. [Google Scholar] [CrossRef]
- Strauch, M.; Volk, M. SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecol. Model. 2013, 269, 98–112. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006 [LAI 500m]; NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD15A2H.006 (accessed on 9 April 2018).
- FAO/IIASA/ISRIC/ISS-CAS/JRC. Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012; Available online: http://www.fao.org/3/a-aq361e.pdf (accessed on 15 March 2018).
- Wösten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Ashraf Vaghefi, S.; Farzaneh, M.R.; Zehnder, A.J.B.; Srinivasan, R.; Yang, H. Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85–101. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availibility in Iran. Hydrol. Process. 2010, 23, 486–501. [Google Scholar] [CrossRef]
- Malagò, A.; Efstathiou, D.; Bouraoui, F.; Nikolaidis, N.P.; Franchini, M.; Bidoglio, G.; Kritsotakis, M. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete. J. Hydrol. 2016, 540, 64–81. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Xie, P.; Yoo, S.; Joyce, R.; Yarosh, Y. Bias-Corrected CMORPH: A 13-Year Analysis of High-Resolution Global Precipitation. Available online: http://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/REF/EGU_1104_Xie_bias-CMORPH.pdf (accessed on 13 March 2018).
- Bosilovich, M.G.; Lucchesi, R.; Suarez, M. MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1); NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2016.
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’ s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.; Zhao, M.; Running, S. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; De Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; Van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; Van Dijk, A.I.J.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of Active and Passive Microwave Observations to Create an Essential Climate Variable Data Record on Soil Moisture. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1–7, 315–321. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field’ Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Rietbroek, R.; Fritsche, M.; Brunnabend, S.E.; Daras, I.; Kusche, J.; Schröter, J.; Flechtner, F.; Dietrich, R. Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J. Geodyn. 2012, 59–60, 64–71. [Google Scholar] [CrossRef]
- Rietbroek, R.; Brunnabend, S.E.; Kusche, J.; Schröter, J. Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J. Geodyn. 2012, 59–60, 72–81. [Google Scholar] [CrossRef]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Kusche, J. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geodesy 2007, 81, 733–749. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Global analysis of approaches for deriving total water storage changes fromGRACE satellites. Water Resour. Res. 2015, 51, 2574–2594. [Google Scholar] [CrossRef]
- Longuevergne, L.; Scanlon, B.R.; Wilson, C.R. GRACE hydrological estimates for small basins: Evaluating processing approaches on the High Plains aquifer, USA. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Tanaka, M.; Adjadeh, T.A.; Tanaka, S.; Sugimura, T. Water surface area measurement of Lake Volta using SSM/I 37-GHz polarization difference in rainy season. Adv. Space Res. 2002, 30, 2501–2504. [Google Scholar] [CrossRef]
- Uebbing, B.; Kusche, J.; Forootan, E. Waveform Retracking for Improving Level Estimations From TOPEX/Poseidon, Jason-1, and Jason-2 Altimetry Observations Over African Lakes. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2211–2224. [Google Scholar] [CrossRef]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT Interface for SWAT 2009; USDA Agricultural Research Service: Temple, TX, USA, 2010.
- Itiveh, K.; Bigg, G. The variation of discharge entering the Niger Delta system, 1951–2000, and estimates of change under global warming. Int. J. Climatol. 2008, 28, 659–666. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Weiß, M.; Menzel, L. A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Adv. Geosci 2008, 18, 15–23. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S.; Yang, J. SWAT-CUP Calibration and Uncertainty Programs for SWAT. In Proceedings of the 4th International SWAT Conference, Delft, The Netherlands, 4–6 July 2007; pp. 1596–1602. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool: Input/Output Documentation; Texas Water Resources Institute: College Station, TX, USA, 2012. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual; Texas Water Resources Institute: College Station, TX, USA, 2002. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual; Swiss Federal Institute of Aquatic Science and Technology (EAWAG): Dübendorf, Switzerland, 2015. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Qiao, L.; Herrmann, R.B.; Pan, Z. Parameter Uncertainty Reduction for SWAT Using Grace, Streamflow, and Groundwater Table Data for Lower Missouri River Basin. J. Am. Water Resour. Assoc. 2013, 49, 343–358. [Google Scholar] [CrossRef]
- DeLiberty, T.L.; Legates, D.R. Interannual and seasonal variability of modelled soil moisture in Oklahoma. Int. J. Climatol. 2003, 23, 1057–1086. [Google Scholar] [CrossRef]
- Milzow, C.; Krogh, P.E.; Bauer-Gottwein, P. Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrol. Earth Syst. Sci. 2011, 15, 1729–1743. [Google Scholar] [CrossRef] [Green Version]
- Rajib, M.A.; Merwade, V.; Yu, Z. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. J. Hydrol. 2016, 536, 192–207. [Google Scholar] [CrossRef]
- Abbaspour, K.; Vaghefi, S.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef]
- Jovanovic, N.; Mu, Q.; Bugan, R.D.H.; Zhao, M. Dynamics of MODIS evapotranspiration in South Africa. Water SA 2015, 41, 79–91. [Google Scholar] [CrossRef]
- Sun, Z.; Gebremichael, M.; Ardö, J.; Nickless, A.; Caquet, B.; Merboldh, L.; Kutschi, W. Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data. Atmos. Res. 2012, 112, 35–44. [Google Scholar] [CrossRef]
- Grippa, M.; Kergoat, L.; Frappart, F.; Araud, Q.; Boone, A.; De Rosnay, P.; Lemoine, J.M.; Gascoin, S.; Balsamo, G.; Ottlé, C.; et al. Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour. Res. 2011, 47, 1–18. [Google Scholar] [CrossRef]
- Ndehedehe, C.; Awange, J.; Agutu, N.; Kuhn, M.; Heck, B. Understanding Changes in Terrestrial Water Storage over West Africa between 2002 and 2014. Adv. Water Resour. 2016, 88, 211–230. [Google Scholar] [CrossRef]
- Boone, A.; Decharme, B.; Guichard, F.; de Rosnay, P.; Balsamo, G.; Beljaars, A.; Chopin, F.; Orgeval, T.; Polcher, J.; Delire, C.; et al. The AMMA Land Surface Model Intercomparison Project (ALMIP). Bull. Am. Meteorol. Soc. 2009, 90, 1865–1880. [Google Scholar] [CrossRef]
- Werth, S.; White, D.; Bliss, D.W. GRACE Detected Rise of Groundwater in the Sahelian Niger River Basin. J. Geophys. Res. Solid Earth 2017. [Google Scholar] [CrossRef]
- Rateb, A.; Kuo, C.-Y.; Imani, M.; Tseng, K.-H.; Lan, W.-H.; Ching, K.-E.; Tseng, T.-P. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods. Sensors 2017, 17, 566. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Jin, S. Water storage changes and balances in Africa observed by GRACE and hydrologic models. Geodesy Geodyn. 2016, 7, 39–49. [Google Scholar] [CrossRef]
River Basin | Area in km2 | Gauges | SWAT Model |
---|---|---|---|
Niger | 2,246,220 | 12 | Niger |
Senegal | 480,289 | 1 | West |
Volta | 425,133 | 16 | South |
Comoé | 84,533 | 3 | South |
Gambia | 78,321 | 8 | West |
Ouémé | 61,057 | 17 | South |
Mono | 24,310 | 1 | South |
Pra | 23,345 | 1 | South |
Ankobra | 8773 | 1 | South |
Kouffo | 4122 | 1 | South |
Ayensu | 1753 | 1 | South |
TOTAL | 3,437,856 | 62 | All |
SWAT Parameter | Differs By | min | max |
---|---|---|---|
CN2 * | Land use | −0.5 | 0.1 |
SOL_AWC * | Soil Texture | −0.1 | 0.5 |
SOL_K * | Soil Texture | −0.5 | 0.5 |
SOL_BD * | Soil Texture | −0.5 | 0.1 |
EPCO * | −0.3 | 0.3 | |
ESCO * | Land use | −0.3 | 0.3 |
GW_DELAY | 0 | 100 | |
GWQMN | 0 | 1000 | |
RCHRG_DP | 0 | 1 | |
GW_REVAP | 0.02 | 0.2 | |
REVAPMN | 0 | 500 | |
SURLAG | 0 | 10 |
Model | Objective Function | % of Discharge Stations | |||||||
---|---|---|---|---|---|---|---|---|---|
p | r | R2 | PBIAS | KGE | KGE ≥ 0 | KGE ≥ 0 | KGE ≥ 0.5 | KGE ≥ 0.7 | |
Calibration | |||||||||
South v1 | 0.37 | 0.36 | 0.53 | 5.54 | 0.23 | 0.48 | 85 | 54 | 20 |
South v2 | 0.31 | 0.71 | 0.51 | −29.71 | 0.15 | 0.47 | 66 | 39 | 5 |
West v1 | 0.73 | 1.42 | 0.57 | 7.01 | 0.40 | 0.54 | 90 | 50 | 20 |
West v2 | 0.33 | 0.79 | 0.61 | −53.50 | −0.13 | 0.38 | 78 | 33 | 0 |
Niger v1 | 0.30 | 0.65 | 0.46 | 30.53 | 0.14 | 0.38 | 58 | 17 | 0 |
Niger v2 | 0.29 | 0.62 | 0.41 | 11.98 | 0.08 | 0.35 | 75 | 25 | 25 |
Average v1 | 0.47 | 0.81 | 0.52 | 14.36 | 0.26 | 0.47 | 78 | 40 | 13 |
Average v2 | 0.31 | 0.71 | 0.51 | −23.74 | 0.03 | 0.40 | 73 | 32 | 10 |
Validation | |||||||||
South v1 | 0.36 | 0.44 | 0.61 | −1.39 | 0.03 | 0.48 | 78 | 37 | 17 |
South v2 | 0.30 | 0.80 | 0.60 | −62.67 | −0.21 | 0.54 | 73 | 49 | 24 |
West v1 | 0.72 | 12.22 | 0.74 | 20.43 | 0.17 | 0.47 | 67 | 44 | 11 |
West v2 | 0.30 | 0.97 | 0.71 | −825.36 | −8.72 | 0.32 | 67 | 0 | 0 |
Niger v1 | 0.30 | 0.57 | 0.52 | 33.73 | 0.03 | 0.30 | 67 | 17 | 8 |
Niger v2 | 0.36 | 0.59 | 0.53 | 30.18 | 0.10 | 0.48 | 50 | 25 | 8 |
Average v1 | 0.46 | 4.41 | 0.63 | 17.59 | 0.07 | 0.42 | 70 | 33 | 12 |
Average v2 | 0.32 | 0.78 | 0.61 | −285.95 | −2.94 | 0.45 | 63 | 25 | 11 |
Model | R2 | sig. | PBIAS | NSE | KGE |
---|---|---|---|---|---|
South v1 | 0.93 | <0.001 | 5.0 | 0.81 | 0.71 |
South v2 | 0.92 | <0.001 | 6.6 | 0.73 | 0.63 |
West v1 | 0.92 | <0.001 | −15.8 | 0.88 | 0.80 |
West v2 | 0.91 | <0.001 | −15.1 | 0.87 | 0.82 |
Niger v1 | 0.94 | <0.001 | 2.8 | 0.81 | 0.67 |
Niger v2 | 0.94 | <0.001 | 4.4 | 0.82 | 0.70 |
Average v1 | 0.93 | 2.67 | 0.83 | 0.73 | |
Average v2 | 0.92 | 1.37 | 0.81 | 0.72 |
Model | R2 | sig. |
---|---|---|
South v1 | 0.77 | <0.001 |
South v2 | 0.82 | <0.001 |
West v1 | 0.69 | <0.001 |
West v2 | 0.73 | <0.001 |
Niger v1 | 0.80 | <0.001 |
Niger v2 | 0.80 | <0.001 |
Average v1 | 0.75 | |
Average v2 | 0.78 |
Model | R2 | sig. | NSE |
---|---|---|---|
South v1 | 0.75 | <0.001 | 0.75 |
South v2 | 0.70 | <0.001 | 0.68 |
West v1 | 0.90 | <0.001 | 0.87 |
West v2 | 0.35 | <0.001 | 0.27 |
Niger v1 | 0.82 | <0.001 | 0.76 |
Niger v2 | 0.79 | <0.001 | 0.72 |
Average v1 | 0.82 | 0.79 | |
Average v2 | 0.61 | 0.56 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poméon, T.; Diekkrüger, B.; Springer, A.; Kusche, J.; Eicker, A. Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach. Water 2018, 10, 451. https://doi.org/10.3390/w10040451
Poméon T, Diekkrüger B, Springer A, Kusche J, Eicker A. Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach. Water. 2018; 10(4):451. https://doi.org/10.3390/w10040451
Chicago/Turabian StylePoméon, Thomas, Bernd Diekkrüger, Anne Springer, Jürgen Kusche, and Annette Eicker. 2018. "Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach" Water 10, no. 4: 451. https://doi.org/10.3390/w10040451
APA StylePoméon, T., Diekkrüger, B., Springer, A., Kusche, J., & Eicker, A. (2018). Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach. Water, 10(4), 451. https://doi.org/10.3390/w10040451