Brooks–Corey Modeling by One-Dimensional Vertical Infiltration Method
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
3.1. Soil Sample Collection and SWRC Measurement
3.2. Laboratory One-Dimensional Infiltration
3.3. Error Analysis
4. Results
4.1. Comparison of the Fitted and Calculated Values of α and n
4.2. Comparison of the Measured and Calculated SWRCs
4.3. Performance of Cumulative Infiltration Simulation
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, Y.; Sun, D. Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction. Comput. Geotech. 2017, 91, 17–26. [Google Scholar] [CrossRef]
- Pham, H.Q.; Fredlund, D.G. Equations for the entire soil-water characteristic curve of a volume change soil. Can. Geotech. J. 2008, 45, 443–453. [Google Scholar] [CrossRef]
- Wong, J.T.F.; Chen, Z.; Chen, X.; Ng, C.W.W.; Wong, M.H. Soil-water retention behavior of compacted biochar-amended clay: A novel landfill final cover material. J. Soil Sediments 2017, 17, 590–598. [Google Scholar] [CrossRef]
- Xing, X.; Kang, D.; Ma, X. Differences in loam water retention and shrinkage behavior: Effects of various types and concentrations of salt ions. Soil Tillage Res. 2017, 167, 61–72. [Google Scholar] [CrossRef]
- Ciocca, F.; Lunati, I.; Parlange, M.B. Effects of the water retention curve on evaporation from arid soils. Geophys. Res. Lett. 2014, 41, 3110–3116. [Google Scholar] [CrossRef]
- Zhou, W.H.; Yuen, K.V.; Tan, F. Estimation of soil-water characteristic curve and relative permeability for granular soils with different initial dry densities. Eng. Geol. 2014, 179, 1–9. [Google Scholar] [CrossRef]
- Garg, N.K.; Gupta, M. Assessment of improved soil hydraulic parameters for soil water content simulation and irrigation scheduling. Irrig. Sci. 2015, 33, 247–264. [Google Scholar] [CrossRef]
- Xing, X.; Li, Y.; Ma, X. Water retention curve correction using changes in bulk density during data collection. Eng. Geol. 2018, 233, 231–237. [Google Scholar] [CrossRef]
- Boivin, P.; Garnier, P.; Vauclin, M. Modeling the soil shrinkage and water retention curves with the same equations. Soil Sci. Soc. Am. J. 2006, 70, 1082–1093. [Google Scholar] [CrossRef]
- Braudeau, E.; Sene, M.; Mohtar, R.H. Hydrostructural characteristic of two African tropical soils. Eur. J. Soil Sci. 2005, 56, 375–388. [Google Scholar] [CrossRef]
- Lu, D.; Shao, M.; Horton, R.; Liu, C. Effect of changing bulk density during water desorption measurement on soil hydraulic properties. Soil Sci. 2004, 169, 319–329. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H. Estimation of permeability function from the soil-water characteristic curve. Eng. Geol. 2015, 199, 148–156. [Google Scholar] [CrossRef]
- Fu, X.; Shao, M.; Lu, D.; Wang, H. Soil water characteristic curve measurement without bulk density changes and its implications in the estimation of soil hydraulic properties. Geoderma 2011, 167, 1–8. [Google Scholar] [CrossRef]
- Mohammadi, M.H.; Meskini-Vishkaee, F. Predicting soil moisture characteristic curves from continuous particle-size distribution data. Pedosphere 2013, 23, 70–80. [Google Scholar] [CrossRef]
- Yao, W.W.; Ma, X.Y.; Li, J.; Parkes, M. Simulation of point source wetting pattern of subsurface drip irrigation. Irrig. Sci. 2011, 29, 331–339. [Google Scholar] [CrossRef]
- Parlange, J.Y. Theory of water-movement in soils: I. One-dimensional absorption. Soil Sci. 1971, 111, 134–137. [Google Scholar] [CrossRef]
- Russo, D. Determining soil hydraulic properties by parameter estimation: On the selection of a model for the hydraulic properties. Water Resour. Res. 1988, 24, 453–459. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Hydraulic Papers; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Xing, X.; Liu, Y.; Zhao, W.; Kang, D.; Yu, M.; Ma, X. Determination of dominant weather parameters on reference evapotranspiration by path analysis theory. Comput. Electron. Agric. 2016, 120, 10–16. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, J.; Lai, J.; Wang, Q. An improved method for determining Brooks-Corey model parameters from horizontal absorption. Geoderma 2016, 263, 122–131. [Google Scholar] [CrossRef]
- Wang, Q.; Horton, R.; Shao, M. Horizontal infiltration method for determining Brooks-Corey model parameters. Soil Sci. Soc. Am. J. 2002, 66, 1733–1739. [Google Scholar] [CrossRef]
- Su, L.; Wang, J.; Qin, X.; Wang, Q. Approximate solution of a one-dimensional soil water infiltration equation based on the Brooks-Corey model. Geoderma 2017, 297, 28–37. [Google Scholar] [CrossRef]
Soil Type | Particle Size Distribution/% | θs/(cm3/cm3) e | θr/(cm3/cm3) f | Designed γd/(g/cm3) g | SOC/(g/kg) h | ||
---|---|---|---|---|---|---|---|
0–0.002 mm | 0.002–0.02 mm | 0.02–2 mm | |||||
Sandy loam a | 9.24 | 22.01 | 68.75 | 0.502 | 0.04 | 1.10~1.13 | 16.50 |
Sandy loam b | 15.59 | 20.53 | 63.88 | 0.327 | 0.03 | 1.51~1.55 | 4.52 |
Loam c | 17.12 | 38.65 | 44.23 | 0.363 | <0.001 | 1.51~1.56 | 2.23 |
Loam d | 19.00 | 34.94 | 46.06 | 0.481 | 0.06 | 1.30~1.33 | 6.65 |
Experimental Soils | A1 | A2 | R2 | A3 | R2 |
---|---|---|---|---|---|
Sandy loam from Liaoning Province | 1.2811 | 0.0238 | 0.9712 | 0.3969 | 0.9845 |
1.2025 | 0.0221 | 0.9697 | 0.3711 | 0.9912 | |
1.2404 | 0.0232 | 0.9812 | 0.3870 | 0.9953 | |
1.2413 | 0.0230 | 0.9689 | 0.3850 | 0.9980 | |
Sandy loam from Xinjiang Province | 1.8720 | 0.0345 | 0.9845 | 0.3108 | 0.9976 |
1.8558 | 0.0310 | 0.9674 | 0.2814 | 0.9918 | |
1.8403 | 0.0306 | 0.9621 | 0.2764 | 0.9920 | |
1.8560 | 0.0320 | 0.9775 | 0.2895 | 0.9987 | |
Loam from Shandong Province | 1.5521 | 0.0238 | 0.9810 | 0.2974 | 0.9950 |
1.5546 | 0.0248 | 0.9755 | 0.3001 | 0.9899 | |
1.5389 | 0.0234 | 0.9733 | 0.2990 | 0.9978 | |
1.5485 | 0.0240 | 0.9793 | 0.2988 | 0.9988 | |
Loam from Shaanxi Province | 0.8740 | 0.0199 | 0.9589 | 0.4101 | 0.9984 |
0.8785 | 0.0211 | 0.9746 | 0.4181 | 0.9973 | |
0.8939 | 0.0221 | 0.9810 | 0.4349 | 0.9892 | |
0.8821 | 0.0210 | 0.9633 | 0.4210 | 0.9972 |
Experimental Soils | RMSE/(cm3/cm3) | MAE/(cm3/cm3) | MAPE/% |
---|---|---|---|
Sandy loam from Liaoning Province | 0.0023 | 0.0015 | 0.3989 |
Sandy loam from Xinjiang Province | 0.0078 | 0.0076 | 4.8849 |
Loam from Shandong Province | 0.0101 | 0.0100 | 5.1445 |
Loam from Shaanxi Province | 0.0018 | 0.0012 | 0.3806 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Wang, H.; Ma, X. Brooks–Corey Modeling by One-Dimensional Vertical Infiltration Method. Water 2018, 10, 593. https://doi.org/10.3390/w10050593
Xing X, Wang H, Ma X. Brooks–Corey Modeling by One-Dimensional Vertical Infiltration Method. Water. 2018; 10(5):593. https://doi.org/10.3390/w10050593
Chicago/Turabian StyleXing, Xuguang, Heng Wang, and Xiaoyi Ma. 2018. "Brooks–Corey Modeling by One-Dimensional Vertical Infiltration Method" Water 10, no. 5: 593. https://doi.org/10.3390/w10050593
APA StyleXing, X., Wang, H., & Ma, X. (2018). Brooks–Corey Modeling by One-Dimensional Vertical Infiltration Method. Water, 10(5), 593. https://doi.org/10.3390/w10050593