Integrated Effects of Land Use and Topography on Streamflow Response to Precipitation in an Agriculture-Forest Dominated Northern Watershed
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site and Data Collection
2.2. Data Analysis
2.2.1. Snowmelt Calculation
2.2.2. Direct Runoff and Baseflow Separation
2.2.3. Precipitation and Streamflow Variability Analysis
2.2.4. Wavelet Analysis of Daily Precipitation and Streamflow
3. Results
3.1. Temporal Variation of Daily Precipitation
3.2. Precipitation and Streamflow Characteristics
3.2.1. Annual and Monthly Precipitation and Streamflow Characteristics
3.2.2. The CWT Results of Daily Precipitation and Streamflow
3.2.3. The XWT of Precipitation and Streamflow
3.2.4. WTC of Precipitation and Streamflow and Time Lag
4. Discussion
4.1. Coupled Effects of Land Use and Topography on Streamflow Variability
4.2. Coupled Effects of Land Use and Topography on Streamflow Response to Precipitation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Price, K. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog. Phys. Geogr. 2011, 35, 465–492. [Google Scholar] [CrossRef]
- Price, K.; Jackson, C.R.; Parker, A.J.; Reitan, T.; Dowd, J.; Cyterski, M. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, USA. Water Resour. Res. 2011, 47, W02516. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, Q.; Chen, Y.D.; Smettem, K.; Xu, C. Simulating the integrated effects of topography and soil properties on runoff generation in hilly forested catchments, South China. Hydrol. Process. 2010, 24, 714–725. [Google Scholar] [CrossRef]
- Strauch, A.M.; MacKenzie, R.A.; Giardina, C.P.; Bruland, G.L. Climate driven changes to rainfall and streamflow patterns in a model tropical island hydrological system. J. Hydrol. 2015, 523, 160–169. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Burbano, M.; Roush, J.; Kang, H.; Sridhar, V.; Hyndman, D.W. A Review of the Integrated Effects of Changing Climate, Land Use, and Dams on Mekong River Hydrology. Water 2018, 10, 266. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 22, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, D.; Wang, T.; Li, Y.; Wang, S.; Yang, Y.; Wang, X.; Guo, H.; Peng, S.; Ding, J.; et al. Grassland restoration reduces water yield in the headstream region of Yangtze River. Sci. Rep. 2017, 7, 2162. [Google Scholar] [CrossRef] [PubMed]
- Roa-García, M.C.; Brown, S.; Schreier, H.; Lavkulich, L.M. The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resour. Res. 2011, 47, W05510. [Google Scholar] [CrossRef]
- Germer, S.; Neill, C.; Vetter, T.; Chaves, J.; Krusche, A.V.; Elsenbeer, H. Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. J. Hydrol. 2009, 364, 349–363. [Google Scholar] [CrossRef]
- Chhabra, A.; Geist, H.; Houghton, R.A.; Haberl, H.; Braimoh, A.K.; Vlek, P.; Patz, J.; Xu, J.C.; Ramankutty, N.; Coomes, O.; et al. Multiple impacts of land use/cover change. In Land-Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H.J., Eds.; Springer: Berlin, Germany, 2006; pp. 71–116. [Google Scholar]
- Farley, K.A.; Jobbagy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Ch. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Wang, R.; Kalin, L.; Kuang, W.; Tian, H. Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. Hydrol. Process. 2014, 28, 5530–5546. [Google Scholar] [CrossRef]
- Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Zeng, Z.; Liu, Y.; Peng, S.; Zhu, Z.; Piao, S. The effect of afforestation on soil moisture content in Northeastern China. PLoS ONE 2016, 11, e0160776. [Google Scholar] [CrossRef] [PubMed]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar]
- Ma, X.; Xu, J.; Luo, Y.; Aggarwal, S.P.; Li, J. Responses of hydrological processes to land-cover and climate changes in Kejie Watershed, South-West China. Hydrol. Process. 2009, 23, 1179–1191. [Google Scholar] [CrossRef]
- Beven, K.; Kirkby, M.J. A physically-based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar]
- Tetzlaff, D.; Seibert, J.; McGuire, K.J.; Laudon, H.; Burn, D.A.; Dunn, S.M.; Soulsby, C. How does landscape structure influence catchment transit time across different geomorphic provinces? Hydrol. Process. 2009, 23, 945–953. [Google Scholar] [CrossRef]
- Moraes, J.M.; Schuler, A.E.; Dunne, T.; Figueiredo, R.O.; Victoria, R.L. Water storage and runoff processes in plinthic soils under forest and pasture in Eastern Amazonia. Hydrol. Process. 2006, 20, 2509–2526. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; Voll, E.; McDonald, A.; Lefebvre, P.; Schlesinge, P. Modelling conservation in the Amazon Basin. Nature 2006, 440, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Piña, C.; Guevara, A.; Torres, J.M.; Braña, J. Paying for the hydrological services of Mexico’s forests: Analysis, negotiations and results. Ecol. Econ. 2008, 65, 725–736. [Google Scholar] [CrossRef]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 1–9. [Google Scholar] [CrossRef]
- Muñoz-Villers, L.E.; McDonnell, J.J. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol. Earth Syst. Sci. 2013, 17, 3543–3560. [Google Scholar] [CrossRef]
- Jiang, R.; Li, Y.; Wang, Q.; Kuramochi, K.; Hayakawa, A.; Woli, K.P.; Hatano, R. Modeling the water balance processes for understanding the components of river discharge in a non-conservative watershed. Trans. ASABE 2011, 54, 2171–2218. [Google Scholar] [CrossRef]
- Jiang, R.; Woli, K.P.; Kuramochi, K.; Hayakawa, A.; Shimizu, M.; Hatano, R. Coupled control of land use and topography on nitrate-nitrogen dynamics in three adjacent watersheds. Catena 2012, 97, 1–11. [Google Scholar] [CrossRef]
- Tachibana, H.; Nasu, Y. Measurement of runoff. In Water Analysis; Kagaku Dojin: Kyoto, Japan, 2003; pp. 362–370. [Google Scholar]
- Motoyama, H. Simulation of seasonal snowcover based on air temperature and precipitation. J. Appl. Meteorol. 1990, 29, 1104–1110. [Google Scholar] [CrossRef]
- Reinel, S.-A.; Joe, R. M.; William, J.M. Effects of temperature and precipitation on snowpack variability in the Central Rocky Mountains as a function of elevation. Geophys. Res. Lett. 2015, 42, 4429–4438. [Google Scholar]
- Arnold, J.; Allen, P. Automated methods for estimating baseflow and ground water recharge from streamflow records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Nathan, R.J.; MaMahon, T.A. Evaluation of automated techniques for baseflow and recession analysis. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; et al. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience. Hydrol. Process. 2010, 24, 3591–3602. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992; p. 357. [Google Scholar]
- Meyer, Y. Ondelettes et Opérateurs I; Hermann: Paris, France, 1989; p. 215. (In French) [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ESNO-monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, R.; Mao, X.; Sauvage, S.; Sánchez-Pérez, J.M.; Woli, K.P.; Kuramochi, K.; Hayakawa, A.; Hatano, R. Estimating sediment and particulate organic nitrogen and particulate organic phosphorous yields from a volcanic watershed characterized by forest and agriculture using SWAT model. Annales Limnol. Int. J. Limnol. 2015, 51, 23–35. [Google Scholar] [CrossRef]
- Allen, M.R.; Smith, L.A. Monte Carlo SSA: Detecting irregular oscillations in the presence of coloured noise. J. Clim. 1996, 9, 3373–3404. [Google Scholar] [CrossRef]
- Kestin, T.A.; Karoly, D.J.; Yano, J.I.; Rayner, N.A. Time-frequency variability of ENSO and stochastic simulations. J. Clim. 1998, 11, 2258–2272. [Google Scholar] [CrossRef]
- Salerno, F.; Tartari, G. A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments. J. Hydrol. 2009, 376, 295–306. [Google Scholar] [CrossRef]
- Ellis, A.; Ramirez, C.; Mac Donald, R.H. Wetting capacity distribution in aggregates from soils with a different management. J. Food Agric. Environ. 2003, 1, 229–233. [Google Scholar]
- Khan, M.N.; Gong, Y.; Hu, T.; Lal, R.; Zheng, J.; Justine, M.F.; Azhar, M.; Che, M.; Zhang, H. Effect of slope, rainfall intensity and mulch on erosion and infiltration under simulated rain on purple soil of South-Western Sichuan Province, China. Water 2016, 8, 528. [Google Scholar] [CrossRef]
- Sawano, S.; Komatsu, H.; Suzuki, M. Differences in annual precipitation amounts between forested area, agricultural area, and urban area in Japan. J. Jpn. Soc. Hydrol. W. Resour. 2005, 18, 435–440. [Google Scholar] [CrossRef]
- Muñoz-Villers, L.E.; McDonnell, J.J. Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate. Water Resour. Res. 2012, 48, W09528. [Google Scholar] [CrossRef]
- Sidle, R.C. Stormflow generation in forest headwater catchments: A hydrogeomorphic approach. For. Snow Landsc. Res. 2006, 80, 115–128. [Google Scholar]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Sayama, T.; McDonnell, J.J.; Dhakal, A.; Sullivan, K. How much water can a watershed store? Hydrol. Process. 2011, 25, 3899–3908. [Google Scholar] [CrossRef]
- Luo, P.; He, B.; Duan, W.; Takara, K.; Nover, D. Impact assessment of rainfall scenarios and land-use change on hydrologic response using synthetic Area IDF curves. J. Flood Risk Manag. 2018, 11, S84–S97. [Google Scholar] [CrossRef]
- Luo, P.; Zhou, M.; Deng, H.; Lyu, J.; Cao, W.; Takara, K.; Nover, D.; Schladow, S.G. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change. Sci. Total Environ. 2018, 615, 1355–1363. [Google Scholar] [CrossRef]
Watershed | Area (km2) | Land Use (%) | Percentage of Areas with Slopes | Relief Ratio | ||
---|---|---|---|---|---|---|
Agriculture | Forest | 0–10% | >10% | |||
AW | 14.3 | 73.5 | 23.5 | 97.6 | 2.4 | 0.0146 |
FW | 70.0 | 14.5 | 84.4 | 37.2 | 62.8 | 0.0553 |
AFW | 36.6 | 58.9 | 37.1 | 79.7 | 20.3 | 0.0362 |
SRW | 672.0 | 40.8 | 53.7 | 70.0 | 30.0 | 0.0173 |
Watershed | Surface Flow (mm day−1) | Baseflow (mm day−1) | Baseflow Fraction (%) | Total Streamflow (mm day−1) |
---|---|---|---|---|
AW | 0.11 | 1.13 | 84.1 | 1.24 |
FW | 0.56 | 2.97 | 91.1 | 3.53 |
AFW | 0.38 | 1.82 | 82.7 | 2.20 |
SRW | 0.38 | 2.42 | 86.4 | 2.80 |
Watershed | CvPA | CvQA | CvQA/CvPA | cor(QA, PA) | CvPmo | CvQmo | CvQmo/CvPmo | cor(Qmo, Pmo) |
---|---|---|---|---|---|---|---|---|
AW | 0.22 | 0.28 | 1.27 | 0.09 | 0.83 | 0.34 | 0.41 | 0.01 |
FW | 0.22 | 0.26 | 1.18 | 0.75 | 0.83 | 0.65 | 0.78 | 0.06 |
AFW | 0.22 | 0.28 | 1.27 | 0.93 | 0.83 | 0.59 | 0.71 | 0.10 |
SRW | 0.22 | 0.26 | 1.18 | 0.94 | 0.83 | 0.54 | 0.65 | 0.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Shang, S.; Jia, D.; Han, Y.; Sauvage, S.; Sánchez-Pérez, J.-M.; Kuramochi, K.; Hatano, R. Integrated Effects of Land Use and Topography on Streamflow Response to Precipitation in an Agriculture-Forest Dominated Northern Watershed. Water 2018, 10, 633. https://doi.org/10.3390/w10050633
Wang C, Shang S, Jia D, Han Y, Sauvage S, Sánchez-Pérez J-M, Kuramochi K, Hatano R. Integrated Effects of Land Use and Topography on Streamflow Response to Precipitation in an Agriculture-Forest Dominated Northern Watershed. Water. 2018; 10(5):633. https://doi.org/10.3390/w10050633
Chicago/Turabian StyleWang, Chunying, Songhao Shang, Dongdong Jia, Yuping Han, Sabine Sauvage, José-Miguel Sánchez-Pérez, Kanta Kuramochi, and Ryusuke Hatano. 2018. "Integrated Effects of Land Use and Topography on Streamflow Response to Precipitation in an Agriculture-Forest Dominated Northern Watershed" Water 10, no. 5: 633. https://doi.org/10.3390/w10050633
APA StyleWang, C., Shang, S., Jia, D., Han, Y., Sauvage, S., Sánchez-Pérez, J. -M., Kuramochi, K., & Hatano, R. (2018). Integrated Effects of Land Use and Topography on Streamflow Response to Precipitation in an Agriculture-Forest Dominated Northern Watershed. Water, 10(5), 633. https://doi.org/10.3390/w10050633