An Investigation on Performance and Structure of Ecological Revetment in a Sub-Tropical Area: A Case Study on Cuatien River, Vinh City, Vietnam
Abstract
:1. Introduction
- Investigate the effect of climatic factors, such as temperature, precipitation, sunlight hours, and humidity, which directly affect the growth of Vetiver grass on the ecological revetments.
- Determine the soil organic matter, available nitrogen, and phosphorus contents in order to understand the soil nutrient effects on the growth of Vetiver grass.
- Investigate the soil strength to envisage the effect of plant root system on the soil shear strength values.
- Evaluate the ecological revetments with regard to the faunal, floral, and the microbial diversity and their impact on their overall performance.
2. Materials and Methods
2.1. Experimental Site
2.2. Construction Materials
2.3. Climate Data Collection
2.4. Soil Nutrient Test
2.5. Plant Growth Determination
2.6. Soil Shear Strength Test
2.7. Determination of Floral and Faunal Diversity
2.8. Determination of Microbial Diversity
3. Results and Discussion
3.1. Climate Conditions
3.2. Soil Nutrient Test
3.3. Plant Growth Conditions
3.4. Slope Stability Effect
3.5. Improving the Diversity of Flora and Fauna on the Revetments
3.5.1. Floral Diversity
3.5.2. Faunal Diversity
3.6. Microbial Community Diversity
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bolay, J.C.; Cartoux, S.; Cunha, A.; Du, T.T.N.; Bass, M. Sustainable development and urban growth: Precarious habitat and water management in Ho Chi Minh City, Vietnam. Habitat. Int. 1997, 21, 185–197. [Google Scholar] [CrossRef]
- Open Letter. Available online: http://vinhcity.gov.vn/?detail=2/open-letter (accessed on 10 March 2008).
- Böhm, H.R.; Schramm, S.; Bieker, S.; Zeig, C.; Anh, T.H.; Thanh, N.C. The semi-centralized approach to integrated water supply and treatment of solid waste and wastewater—A flexible infrastructure strategy for rapidly growing urban regions: The case of Hanoi/Vietnam. Clean. Technol. Environ. 2011, 13, 617–623. [Google Scholar] [CrossRef]
- Chen, J.; Chang, N.; Fen, C.; Chen, C. Assessing the storm-runoff impact to an urban river ecosystem using estuarine water quality simulation model. Civ. Eng. Environ. Syst. 2010, 21, 33–49. [Google Scholar] [CrossRef]
- Yao, S.; Yue, H.; Li, L. Analysis on current situation and development trend of ecological revetment works in middle and lower reaches of Yangtze river. Procedia Eng. 2012, 28, 307–313. [Google Scholar]
- Wu, H.L.; Feng, Z.Y. Ecological engineering methods for soil and water conservation in Taiwan. Ecol. Eng. 2006, 28, 333–344. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.; Jin, Y. Evaluation on ecological restoration capability of revetment in land restricted channel. KSCE J. Civ. Eng. 2016, 20, 2548–2558. [Google Scholar] [CrossRef]
- AGabriel, O.; Bodensteiner, L.R. Impacts of riprap on wetland shorelines, upper Winnebago pool lakes, Wisconsin. Wetlands 2012, 32, 105–117. [Google Scholar] [CrossRef]
- Ramli, M.; Karasu, T.J.R.; Dawood, E.T. The stability of gabion walls for earth retaining structures. Alexandria Eng. J. 2013, 52, 705–710. [Google Scholar] [CrossRef]
- Helal, H.M.; Beck, D.S. Effect of plant roots on carbon metabolism of soil microbial biomass. J. Plant Nutr. Soil Sci. 1986, 149, 181–188. [Google Scholar] [CrossRef]
- Ali, F.H. Shear strength of a soil containing vegetation roots. Soils Found. 2008, 48, 587–596. [Google Scholar] [CrossRef]
- Olsen, A.; Thuan, L.K.; Murrell, K.D.; Dalsgaard, A.; Johansen, M.V.; De, N.V. Cross-sectional parasitological survey for helminth infections among fish farmers in Nghe An province, Vietnam. Acta Trop. 2006, 100, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.L.; Liu, Z.Z.; Xu, G.L.; Huang, X.J. Protection technology and application of gabion. In Proceedings of the 13th International Conference on Structural & Geotechnical Engineering, Hangzhou, China, 8–10 September 2009; pp. 915–919. [Google Scholar]
- Pagliara, S.; Chiavaccini, P. Urban Stream Restoration Structures; Springer Publishing: Dordrecht, The Netherlands, 2004; Volume 43, pp. 239–252. [Google Scholar]
- Beikircher, B.; Florineth, F.; Mayr, S. Restoration of rocky slopes based on planted gabions and use of drought-preconditioned woody species. Ecol. Eng. 2010, 36, 421–426. [Google Scholar] [CrossRef]
- Salivcop, V.G. Protection of banks and roadbeds from erosion on river “Nip”. Power Technol. Eng. 1986, 20, 575–580. [Google Scholar]
- Crusoe, G.E., Jr.; Cai, Q.; Shu, J.; Han, L.; Barvor, Y.J. Effects of weak layer angle and thickness on the stability of rock slopes. Int. J. Min. Geo-Eng. 2016, 50, 97–110. [Google Scholar]
- Conway, A. Soil Physical—Chemical Analysis; Institute of Soil Science: Nanjing, China; Technology Press: Shanghai, China, 1978. [Google Scholar]
- Nelson, D.W.; Sommers, L.E.; Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis: Part 3—Chemical Methods; Soil Science Society of America Book Series; Crop Science Society of America (CSSA): Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Farooq, K.; Rogers, J.D.; Ahmed, M.F. Effect of densification on the shear strength of landslide material: A case study from salt range, Pakistan. Earth Sci. Res. J. 2008, 48, 587–596. [Google Scholar] [CrossRef]
- Bing, W.; Liu, J.; Singh, R.P.; Fu, D. Effect of alternate dry-wet patterns on the performance of bioretention units for nitrogen removal. Desal. Water Treat. 2016, 59, 295–303. [Google Scholar] [CrossRef]
- Peng, T.; Wang, S.J. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 2012, 90, 53–62. [Google Scholar] [CrossRef]
- Khan, F.; Bhatti, A.U.; Khattak, R.A. Soil and nutrient losses through sediment and surface runoff under maize monocropping and maize-legumes intercropping from upland sloping field. Pak. J. Soil Sci. 2001, 19, 32–40. [Google Scholar]
- Mickovski, S.B.; Beek, L.P.H.V.; Salin, F. Uprooting of vetiver uprooting resistance of vetiver grass (Vetiveria zizanioides). Plant Soil 2005, 278, 33–41. [Google Scholar] [CrossRef]
- Noorasyikin, M.N.; Zainap, M. A tensile strength of Bermuda grass and Vetiver grass in terms of root reinforcement ability toward soil slope stabilization. Mater. Sci. Eng. 2016, 136, 12–29. [Google Scholar] [CrossRef]
- Hawke, R.; McConchie, J. In situ measurement of soil moisture and pore-water pressures in an ‘incipient’ landslide: Lake Tutira, New Zealand. J. Environ. Manag. 2011, 92, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Truong, P.; Van, T.T.; Pinners, E. Vetiver System Applications Technical Reference Manual; The Vetiver Network International (TVNI): San Antonio, TX, USA, 2008; pp. 1–126. [Google Scholar]
- Islam, M.S.; Arif, M.Z.U.; Badhon, F.F.; Mallick, S.; Islam, T. Investigation of vetiver root growth in sandy soil. In Proceedings of the BUET-ANWAR ISPAT 1st Bangladesh Civil Engineering SUMMIT 2016, Dhaka, Bangladesh, 23–26 November 2016. [Google Scholar]
- Mathew, M.; Rosary, S.C.; Sebastian, M.; Cherian, S.M. Effectiveness of Vetiver for treatment of wastewater from institutional kichen. Procedia Technol. 2016, 24, 203–209. [Google Scholar] [CrossRef]
- Cuellar, P.; Philippe, P.; Bonelli, S.; Benahmed, N.; Brunier-Coulin, F.; Ngoma, J.; Delenne, J.; Radjaï, F. Micromechanical analysis of the surface erosion of a cohesive soil by means of a coupled LBM-DEM model. In Proceedings of the International Conference on Particles, Barcelona, Spain, 28–30 September 2015. [Google Scholar]
- Niu, X.; Nan, Z. Roots of Cleistogenes songorica improved soil aggregate cohesion and enhance soil water erosion resistance in rainfall simulation experiments. Water Air Soil Pollut. 2017, 228, 109. [Google Scholar] [CrossRef]
- Strayer, D.L.; Kiviat, E.; Findlay, S.E.G.; Slowik, N. Vegetation of rip rapped revetments along the freshwater tidal Hudson River, New York. Aquatic Sci. 2016, 78, 605–614. [Google Scholar] [CrossRef]
- Xu, M.; Liu, W.; Li, C.; Xiao, C.; Ding, L.; Xu, K.; Geng, J.; Ren, H. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater. Environ. Sci. Pollut. Res. Int. 2016, 23, 10990–11001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, R.; Xue, C.; Xun, W.; Sun, L.; Xu, Y.; Shen, Q. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol. 2014, 67, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Jennifer, B.H.; Jessica, J.H.; Taylor, H.R.; Brendan, J.M.B. Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 2001, 67, 4399–4406. [Google Scholar]
- Telias, A.; White, J.R.; Pahl, D.M.; Ottesen, A.R.; Walsh, C.S. Bacterial community diversity and variation in spray water sources and the tomato fruit surface. BMC Biotechnol. 2011, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Naoki, T.; Catalan-Sakairi, M.A.B.; Yasushi, S.; Isao, K.; Zhou, Z.; Shoun, H. Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl. Environ. Microbiol. 2003, 69, 3152–3157. [Google Scholar]
- Jalil, J.; Alireza, M.; Ramin, N.; Mohammad, H.; Hossein, K.; Amir, H.M. Influence of upflow velocity on performance and biofilm characteristics of anaerobic fluidized bed reactor (AFBR) in treating high-strength wastewater. J. Environ. Sci. Health 2014, 12, 139. [Google Scholar]
Season | Spring (Feb.–Apr.) | Summer (May–Jul.) | Autumn (Aug.–Oct.) | Winter (Nov.–Jan.) | Average (yearly) |
---|---|---|---|---|---|
Daily temperature (°C) | 21.3 | 29.4 | 27.3 | 19.9 | 24.5 |
Average precipitation (mm/month) | 54.2 | 131.2 | 322.6 | 111.8 | 155 |
Monthly sunshine hours (hours/month) | 85.3 | 224.7 | 171.5 | 88.5 | 142.5 |
Humidity (%) | 89.3 | 83.3 | 81.3 | 87.7 | 85.4 |
Time | S1 | S2 | S3 | S4 | S5 | Avg. | SD |
---|---|---|---|---|---|---|---|
Nov. | 1.7 | 1.8 | 1.9 | 1.8 | 1.82 | 1.814 | 0.064 |
Dec. | 2.1 | 2.3 | 2.4 | 2.4 | 2.5 | 2.34 | 0.136 |
Jan. | 4.1 | 4.7 | 4.8 | 4.4 | 4.6 | 4.52 | 0.248 |
Feb. | 11.5 | 12.7 | 12.3 | 13.5 | 13.2 | 12.64 | 0.703 |
Mar. | 28.8 | 30.2 | 32.8 | 29.6 | 31.7 | 30.62 | 1.446 |
Apr. | 56.2 | 48.7 | 52.4 | 49.2 | 52.1 | 51.72 | 2.689 |
May | 65.9 | 59.5 | 63.3 | 57.3 | 64.3 | 62.06 | 3.178 |
Jun. | 71.6 | 80.2 | 79.5 | 81.8 | 75.3 | 77.68 | 3.722 |
Jul. | 79.9 | 82.7 | 92.4 | 84.3 | 87.2 | 85.3 | 4.265 |
Aug. | 92.6 | 104.3 | 101.8 | 106.2 | 96.8 | 100.34 | 4.992 |
Sep. | 113.6 | 105.3 | 97.6 | 101.2 | 108.8 | 105.3 | 5.608 |
Oct. | 119.3 | 102.8 | 107.6 | 108.4 | 113.5 | 110.32 | 5.628 |
Nov. | 125.8 | 119.7 | 108.8 | 112.3 | 115.8 | 116.48 | 5.902 |
Dec. | 119.8 | 129.3 | 123.8 | 117.9 | 111.1 | 120.38 | 6.064 |
Jan. | 125.3 | 132.7 | 128.5 | 121.6 | 113.5 | 124.3 | 6.529 |
Time | S1 | S2 | S3 | S4 | S5 | Avg. | SD |
---|---|---|---|---|---|---|---|
Nov. | 1.83 | 1.82 | 1.91 | 1.72 | 1.74 | 1.804 | 0.068 |
Dec. | 1.96 | 2.09 | 2.12 | 2.2 | 1.97 | 2.068 | 0.092 |
Jan. | 4.32 | 3.84 | 3.94 | 4.32 | 4.5 | 4.184 | 0.251 |
Feb. | 11.3 | 9.63 | 10.9 | 9.82 | 10.17 | 10.364 | 0.638 |
Mar. | 25.6 | 28.5 | 29.4 | 26.3 | 28.8 | 27.72 | 1.491 |
Apr. | 39.6 | 41.3 | 45.4 | 40.2 | 39.1 | 41.12 | 2.262 |
May | 55.6 | 57.5 | 60.3 | 52.6 | 54.2 | 56.04 | 2.672 |
Jun. | 64.6 | 58.9 | 62.3 | 67.2 | 59.3 | 62.46 | 3.154 |
Jul. | 61.8 | 62.2 | 65.9 | 67.3 | 70.4 | 65.5 | 3.225 |
Aug. | 63.7 | 71.3 | 66.1 | 73.2 | 68.3 | 68.5 | 3.428 |
Sep. | 78.1 | 68.1 | 70.2 | 74.5 | 70.2 | 72.22 | 3.603 |
Oct. | 75.8 | 80.2 | 68.9 | 75.2 | 77.9 | 75.6 | 3.783 |
Nov. | 71.6 | 82.1 | 79.7 | 75.6 | 73.6 | 76.52 | 3.869 |
Dec. | 81.6 | 72.8 | 78.2 | 79.5 | 71.6 | 76.74 | 3.881 |
Jan. | 73.8 | 83.7 | 74.5 | 79.3 | 73.8 | 77.02 | 3.922 |
Revetment Type | Sample | Shear Strength Parameter | Increase in Cohesion (kPa) |
---|---|---|---|
Gabion | 0 month | C = 6.2 kPa; Ф = 20.9° | - |
After 6 months | C = 9.9 kPa; Ф = 22.3° | 3.7 | |
After 12 months | C = 16.3 kPa; Ф = 23.5° | 10.1 | |
Riprap | 0 month | C = 6.4 kPa; Ф = 24.2° | - |
After 6 months | C = 13.8 kPa; Ф = 25.0° | 7.4 | |
After 12 months | C = 21.7 kPa; Ф = 27.4° | 15.3 |
Revetment Type | Natural Slope (4 × 8 m2) | Gabion Revetment (4 × 3 m2) | Riprap Revetment (4 × 8 m2) |
---|---|---|---|
Floral | 24 | 14 | 25 |
Faunal | 9 | 5 | 9 |
Samples | Reads | Biodiversity Index (3% Cutoff) | |||||
---|---|---|---|---|---|---|---|
Unified Sequencing Depth | OTU | Chao Index | Shannon Index | ACE Index | Simpson Index | Goods Coverage | |
1 | 50,000 | 2815 | 5192 | 5.1243 | 7889 | 0.0218 | 0.9689 |
2 | 50,000 | 4782 | 7605 | 6.2803 | 8627 | 0.0102 | 0.9561 |
3 | 50,000 | 4998 | 7901 | 6.4997 | 9398 | 0.0087 | 0.9572 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, V.T.; Fu, D.; Ngoc Binh, T.; Rene, E.R.; Sang, T.T.T.; Singh, R.P. An Investigation on Performance and Structure of Ecological Revetment in a Sub-Tropical Area: A Case Study on Cuatien River, Vinh City, Vietnam. Water 2018, 10, 636. https://doi.org/10.3390/w10050636
Tang VT, Fu D, Ngoc Binh T, Rene ER, Sang TTT, Singh RP. An Investigation on Performance and Structure of Ecological Revetment in a Sub-Tropical Area: A Case Study on Cuatien River, Vinh City, Vietnam. Water. 2018; 10(5):636. https://doi.org/10.3390/w10050636
Chicago/Turabian StyleTang, Van Tai, Dafang Fu, Tran Ngoc Binh, Eldon R. Rene, Tang Thi Thanh Sang, and Rajendra Prasad Singh. 2018. "An Investigation on Performance and Structure of Ecological Revetment in a Sub-Tropical Area: A Case Study on Cuatien River, Vinh City, Vietnam" Water 10, no. 5: 636. https://doi.org/10.3390/w10050636