Progress in Understanding the Mechanism of CrVI Removal in Fe0-Based Filtration Systems
Abstract
:1. Introduction
2. Pioneering Investigations on CrVI Removal in Fe0-Based Filters
2.1. Hoover and Masseli (1941)
2.2. Case et al. (1969, 1974)
2.3. McKaveney et al. (1972)
2.4. Gould (1982)
2.5. Bowers et al. (1986)
2.6. Summary
3. Permeable Reactive Barriers (PRBs) as Fe0-Based Filtration Systems for CrVI Removal
3.1. Background
3.2. Early Laboratory-Scale Investigations for PRBs
3.3. Testing Fe0 PRBs for CrVI Removal at Pilot Scale
3.4. Full Scale Fe0 PRBs for CrVI Removal
3.4.1. Elizabeth CITY (USA)
3.4.2. Willisau (Switzerland)
3.5. More Recent Laboratory-Scale Reports (Post Elisabeth City PRB)
3.6. Summary and Conclusions
4. Geochemistry of Chromium in the Context of Fe0-Based Filtration Systems
4.1. Geochemistry of Chromium
4.2. Chromium Removal by FeII Species
4.3. Overview of Reactions of Engineering Importance
5. Recent Advances
5.1. Analysis of the Fe0/CrVI/O2/H2O System
5.2. The Mechanism of CrVI Removal Revisited
5.3. Application to Water Filters
6. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Velma, V.; Vutukuru, S.S.; Tchounwou, P.B. Ecotoxicology of hexavalent chromium in freshwater fish: A critical review. Rev. Environ. Health 2009, 24, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Stasinakis, A.S.; Thomaidis, N.S.; Mamais, D.; Papanikolaou, E.C.; Tsakon, A.; Lekkas, T.D. Effects of chromium(VI) addition on the activated sludge process. Water Res. 2003, 37, 2140–2148. [Google Scholar] [CrossRef]
- Kanojia, R.K.; Junaid, M.; Murthy, R.C. Embryo and fetotoxicity of hexavalent chromium: A long-term study. Toxicol. Lett. 1998, 95, 165–172. [Google Scholar] [CrossRef]
- McLean, J.E.; McNeill, L.S.; Edwards, M.A.; Parks, J.L. Hexavalent chromium review, part 1: Health effects, regulations, and analysis. J. Am. Water Works Assoc. 2012, 104, E348–E357. [Google Scholar] [CrossRef]
- McNeill, L.S.; McLean, J.E.; Parks, J.L.; Edwards, M.A. Hexavalent chromium review, part 2: Chemistry, occurence and treatment. J. Am. Water Works Assoc. 2012, 104, E395–E405. [Google Scholar] [CrossRef]
- Gheju, M. Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut. 2011, 222, 103–148. [Google Scholar] [CrossRef]
- Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 94–205. [Google Scholar] [CrossRef] [PubMed]
- Obiri-Nyarko, F.; Grajales-Mesa, S.J.; Malina, G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, R.T.; Acree, S.D.; Ross, R.R.; Puls, R.W.; Lee, T.R.; Woods, L.L. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater. Sci. Total Environ. 2014, 468–469, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.C.; He, D.; Dong, H. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C. Metallic iron for environmental remediation: A review of reviews. Water Res. 2015, 85, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Mwakabona, H.T.; Nde-Tchoupe, A.I.; Njau, K.N.; Noubactep, C.; Wydra, K.D. Metallic iron for safe drinking water provision: Considering a lost knowledge. Water Res. 2017, 117, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Hoover, C.R.; Masselli, J.W. Disposal of waste liquors from chromium plating. Ind. Eng. Chem. 1941, 33, 131–134. [Google Scholar] [CrossRef]
- Gheju, M. Decontamination of hexavalent chromium-polluted waters: Significance of metallic iron technology. In Enhancing Cleanup of Environmental Pollutants: Non Biological Approaches; Anjum, N., Gill, S., Tuteja, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 2, pp. 209–254. [Google Scholar]
- Gould, J.P. The kinetics of hexavalent chromium reduction by metallic iron. Water Res. 1982, 16, 871–877. [Google Scholar] [CrossRef]
- Noubactep, C. Elemental metals for environmental remediation: Learning from cementation process. J. Hazard. Mater. 2010, 181, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Case, O.P.; Jones, R.B.L.; Connecticut Research Commission. Treatment of Brass Mill Effluents; RSA-68-34; Anaconda American Brass Co.: Waterbury, CT, USA, 1969. [Google Scholar]
- Case, O.P. Metallic Recovery from Waste Waters Utilizing Cementation; EPA-670/2-74-008; Edison Water Quality Research Laboratory, National Environmental Research Center: Edison, NJ, USA, 1974.
- Case, O.P.; Jones, R.B.L.; Speelman, R.D.; Archambault, J.W. Method for Simultaneous Reduction of Hexavalent Chromium and Cementation of Copper. U.S. Patent 3,748,124, 24 July 1973. [Google Scholar]
- McKaveney, J.P.; Fassinger, W.P.; Stivers, D.A. Removal of heavy metals from water and brine using silicon alloys. Environ. Sci. Technol. 1972, 6, 1109–1113. [Google Scholar] [CrossRef]
- Bowers, A.R.; Ortiz, C.A.; Cardozo, R.J. Iron process for treatment of Cr(VI) wastewaters. In Proceedings of the 41st Industrial Waste Conference, West Lafayette, IN, USA, 13–15 May 1986; pp. 465–473. [Google Scholar]
- Cantrell, K.J.; Kaplan, D.I.; Wietsma, T.W. Zero-valent iron for the in situ remediation of selected metals in groundwater. J. Hazard. Mater. 1995, 42, 201–212. [Google Scholar] [CrossRef]
- McMurty, D.C.; Elton, R.O. New approach to in-situ treatment of contaminated groundwaters. Environ. Prog. 1985, 4, 168–170. [Google Scholar] [CrossRef]
- Thomson, B.M.; Shelton, S.P. Permeable barriers: A new alternative for treatment of contaminated ground waters. In Proceedings of the Focus Conference on Southwestern Ground Water Issues, Albuquerque, NM, USA, 23–25 March 1988; pp. 441–453. [Google Scholar]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L. In-situ remediation of chromate contaminated groundwater using permeable reactive walls: Laboratory studies. Environ. Sci. Technol. 1997, 31, 3348–3357. [Google Scholar] [CrossRef]
- Henderson, A.D.; Demond, A.H. Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environ. Eng. Sci. 2007, 24, 401–424. [Google Scholar] [CrossRef]
- Puls, R.W.; Paul, C.J.; Powell, R.M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Appl. Geochem. 1999, 14, 989–1000. [Google Scholar] [CrossRef]
- Scherer, M.M.S.; Richter, S.; Valentine, R.L.; Alvarez, P.J.J. Chemistry and microbiology of reactive barriers for in situ groundwater cleanup. Crit. Rev. Environ. Sci. Technol. 2000, 30, 363–411. [Google Scholar] [CrossRef]
- Noubactep, C.; Schoner, A. Metallic iron for environmental remediation: Learning from electrocoagulation. J. Hazard. Mater. 2010, 175, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Btatkeu-K, B.D.; Tchatchueng, J.B.; Noubactep, C.; Caré, S. Designing metallic iron based water filters: Light from methylene blue discoloration. J. Environ. Manag. 2016, 166, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ding, Y.; Wang, W.; Lei, H. A facile method for determining the Fe(0) content and reactivity of zero valent iron. Anal. Methods 2016, 8, 1239–1248. [Google Scholar] [CrossRef]
- Rhodes, H.F.; Carty, J.T. The corrosion of certain metals by carbon tetrachloride. Ind. Eng. Chem. 1925, 17, 909–911. [Google Scholar] [CrossRef]
- Sweeney, K.H. The reductive treatment of industrial wastewaters: I. Process description. AIChE Symp. Ser. 1980, 209, 67–71. [Google Scholar]
- Sweeney, K.H. The reductive treatment of industrial wastewaters: II. Process applications. AIChE Symp. Ser. 1981, 209, 72–78. [Google Scholar]
- Reynolds, G.W.; Hoff, J.T.; Gillham, R.W. Sampling bias caused by materials used to monitor halocarbons in groundwater. Environ. Sci. Technol. 1990, 24, 135–142. [Google Scholar] [CrossRef]
- Gillham, R.W.; O’Hannesin, S.F. Metal-catalysed abiotic degradation of halogenated organic compounds. Ground Water 1991, 29, 752–761. [Google Scholar]
- Lipczynska-Kochany, E.; Harms, S.; Milburn, R.; Sprah, G.; Nadarajah, N. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds. Chemosphere 1994, 29, 1477–1489. [Google Scholar] [CrossRef]
- Gillham, R.W.; O’Hannesin, S.F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 1994, 32, 958–967. [Google Scholar] [CrossRef]
- Matheson, L.J.; Tratnyek, P.G. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994, 28, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Blowes, D.W.; Ptacek, C.J. Geochemical remediation of groundwater by permeable reactive walls: Removal of chromate by reaction with iron-bearing solids. In Proceedings of the Subsurface Restoration Conference, Third International Conference on Groundwater Quality Research, Dallas, TX, USA, 21–24 June 1992; pp. 214–216. [Google Scholar]
- Powell, R.M.; Puls, R.W.; Hightower, S.K.; Sabatini, D.A. Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation. Environ. Sci. Technol. 1995, 29, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Powell, R.M.; Puls, R.W. Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron. Environ. Sci. Technol. 1997, 31, 2244–2251. [Google Scholar] [CrossRef]
- Eary, L.E.; Rai, D. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 1988, 22, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Pratt, A.R.; Blowes, D.W.; Ptacek, C.J. Products of chromate reduction on proposed subsurface remediation material. Environ. Sci. Technol. 1997, 31, 2492–2498. [Google Scholar] [CrossRef]
- Puls, R.W.; Paul, C.J.; Powell, R.M.; Kerr, R.S. Remediation of Chromate-Contaminated Groundwater Using Zero-Valent Iron: Field Test at USCG Support Center, Elizabeth City, North Carolina; PB-97-122915/X, United States Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Bennett, T.A.; Puls, R.W. Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 2000, 45, 123–137. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kim, J.W.; Watkins, J.; Wilkin, R.T. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ. Sci. Technol. 2002, 36, 5469–5475. [Google Scholar] [CrossRef] [PubMed]
- Bilardi, S.; Calabro, P.S.; Care, S.; Moraci, N.; Noubactep, C. Improving the sustainability of granular iron/pumice systems for water treatment. J. Environ. Manag. 2013, 121, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noubactep, C. Flaws in the design of Fe(0)-based filtration systems? Chemosphere 2014, 117, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Domga, R.; Togue-Kamga, F.; Noubactep, C.; Tchatchueng, J.B. Discussing porosity loss of Fe0 packed water filters at ground level. Chem. Eng. J. 2015, 263, 127–134. [Google Scholar] [CrossRef]
- Puls, R.W.; Blowes, D.W.; Gillham, R.W. Emplacement verification and long-term performance monitoring of a permeable reactive barrier at the USCG Support Center, Elizabeth City, North Carolina. In Proceedings of the Groundwater Quality: Remediation and Protection Conference, Tubingen, Germany, 21–25 September 1998; pp. 459–466. [Google Scholar]
- Puls, R.W.; Blowes, D.W.; Gillham, R.W. Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. J. Hazard. Mater. 1999, 68, 109–124. [Google Scholar] [CrossRef]
- Blowes, D.W.; Gillham, R.W.; Ptacek, C.J.; Puls, R.W.; Bennett, T.A.; O’Hannesin, S.F.; Hanton-Fong, C.J.; Bain, J.G. An In Situ Permeable Reactive Barrier for the Treatment of Hexavalent Chromium and Trichloroethylene in Ground Water: Design and Installation; EPA/600/R-99/095a, United States Environmental Protection Agency: Washington, DC, USA, 1999; Volume 1. [Google Scholar]
- Blowes, D.W.; Ptacek, C.J.; Bener, S.G.; McRae, C.W.T.; Puls, R.W. Treatment of dissolved metals using permeable reactive barriers. In Proceedings of the Groundwater Quality: Remediation and Protection Conference, Tubingen, Germany, 21–25 September 1998; pp. 483–490. [Google Scholar]
- Wilkin, R.T.; Su, C.; Ford, R.G.; Paul, C.J. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environ. Sci. Technol. 2005, 39, 4599–4605. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, R.T.; Puls, R.W.; Sewell, G.W. Long-term performance of permeable reactive barriers using zero-valent iron: Geochemical and microbiological effects. Ground Water 2003, 41, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.H.; Bang, S.; Chang, J.S.; Kim, M.G.; Kim, K.W. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems. J. Hazard. Mater. 2011, 186, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Buerge, I.J.; Hug, S.J. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ. Sci. Technol. 1997, 31, 1426–1432. [Google Scholar] [CrossRef]
- Flury, B.; Eggenberger, U.; Mader, U. First results of operating and monitoring an innovative design of a permeable reactive barrier for the remediaton of chromate contaminated groundwater. J. Appl. Geochem. 2009, 24, 687–697. [Google Scholar] [CrossRef]
- Flury, B.; Frommer, J.; Eggenberger, U.; Mader, U.; Nachtegaal, M.; Kretzschmar, R. Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ. Sci. Technol. 2009, 43, 6786–6792. [Google Scholar] [CrossRef] [PubMed]
- Astrup, T.; Stipp, S.L.S.; Christensen, T.H. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zerovalent iron. Environ. Sci. Technol. 2000, 34, 163–168. [Google Scholar] [CrossRef]
- Chen, S.S.; Cheng, C.Y.; Li, C.W.; Chai, P.H.; Chang, Y.M. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. J. Hazard. Mater. 2007, 142, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Kohn, T.; Livi, K.J.T.; Roberts, A.L.; Vikesland, P.J. Longevity of granular iron in groundwater treatment processes: Corrosion product development. Environ. Sci. Technol. 2005, 39, 2867–2879. [Google Scholar] [CrossRef] [PubMed]
- Odziemkowski, M.S.; Simpraga, R.P. Distribution of oxides on iron materials used for remediation of organic groundwater contaminants: Implication for hydrogen evolution reactions. Can. J. Chem. 2004, 82, 1–12. [Google Scholar] [CrossRef]
- Ritter, K.; Odziemkowski, M.S.; Gillham, R.W. An in situ study of the role of surface films on granular iron in the permeable iron wall technology. J. Contam. Hydrol. 2002, 55, 87–111. [Google Scholar] [CrossRef]
- Yang, J.E.; Kim, J.S.; Ok, Y.S.; Yoo, K.R. Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons. Water Sci. Technol. 2007, 55, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Jeen, S.W.; Blowes, D.W.; Gillham, R.W. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions. J. Contam. Hydrol. 2008, 95, 76–91. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, E.; Bernett, M.K.; Murday, J.S. An XPS study of passive film formation on iron in chromate solutions. Corros. Sci. 1988, 28, 559–576. [Google Scholar] [CrossRef]
- Alidokht, L.; Khataee, A.R.; Reyhanitabar, A.; Oustan, S. Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 2011, 270, 105–110. [Google Scholar] [CrossRef]
- Ribas, D.; Cernik, M.; Benito, J.A.; Filip, J.; Marti, V. Activation process of air stable nanoscale zero-valent iron particles. Chem. Eng. J. 2017, 320, 290–299. [Google Scholar]
- Qian, L.; Zhang, W.; Yan, J.; Han, L.; Chen, Y.; Ouyang, D.; Chen, M. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal. Environ. Pollut. 2017, 223, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, R. Removal of Cr(VI) from groundwater by Fe(0). Appl. Water Sci. 2017, 7, 3625–3661. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, X.; Wang, J.; Fan, J. Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants. Appl. Catal. B 2018, 221, 610–617. [Google Scholar] [CrossRef]
- Amin, N.K. Reduction of hexavalent chromium using zerovalent iron spheres packed in a rotating basket reactor: Kinetic and mass transfer study. Desalin. Water Treat. 2013, 51, 2146–2152. [Google Scholar] [CrossRef]
- Dries, J.; Bastiaens, L.; Springael, D.; Kuypers, S.; Agathos, S.N.; Diels, L. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Res. 2005, 39, 3531–3540. [Google Scholar] [CrossRef] [PubMed]
- Fiuza, A.; Silva, A.; Carvalho, G.; Fuente, A.V.; Delerue-Matos, C. Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron. J. Hazard. Mater. 2010, 175, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Dutta, R.; Mohammad, S.S.; Chakrabarti, S.; Chaudhuri, B.; Bhattacharjee, S.V.; Dutta, B.K. Reduction of hexavalent chromium in aqueous medium with zerovalent iron. Water Environ. Res. 2010, 82, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.V.; Da Silva, L.M.; Jardim, W.F. Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions. Water Air Soil Pollut. 2009, 197, 49–60. [Google Scholar] [CrossRef]
- Mitra, P.; Sarkar, D.; Chakrabarti, S.; Dutta, B.K. Reduction of hexa-valent chromium with zero-valent iron: Batch kinetic studies and rate model. Chem. Eng. J. 2011, 171, 54–60. [Google Scholar] [CrossRef]
- Noubactep, C. A critical review on the mechanism of contaminant removal in Fe0–H2O systems. Environ. Technol. 2008, 29, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, V.N.; Quici, N.; Halac, E.B.; Leyva, A.G.; Custo, G.; Bengio, S.; Zampieri, G.; Litte, M.I. Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)–Cr(III) passive outer layer structure. Chem. Eng. J. 2014, 244, 569–575. [Google Scholar] [CrossRef]
- Ghauch, A. Iron-based metallic systems: An excellent choice for sustainable water treatment. Freib. Online Geosci. 2015, 38, 1–80. [Google Scholar]
- Noubactep, C. Metallic iron for water treatment: A critical review. Clean Soil Air Water 2013, 41, 702–710. [Google Scholar] [CrossRef]
- Coelho, F.; Ardisson, J.D.; Moura, F.C.C.; Lago, R.M.; Murad, E.; Fabris, J.D. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants. Chemosphere 2008, 71, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Scherer, M.; Balko, B.A.; Tratnyek, P.G. The role of oxides in reduction reactions at the metal-water interface. In Mineral-Water Interfacial Reactions; Sparks, D.L., Grundl, T.L., Eds.; American Chemical Society Symposium Series: Washington, DC, USA, 1999; pp. 301–322. [Google Scholar]
- Qiu, S.R.; Lai, H.F.; Roberson, M.J.; Hunt, M.L.; Amrhein, C.; Giancarlo, L.C.; Flynn, G.W.; Yarmoff, J.A. Removal of contaminants from aqueous solution by reaction with iron surfaces. Langmuir 2000, 16, 2230–2236. [Google Scholar] [CrossRef]
- Odziemkowski, M.S.; Schuhmacher, T.T.; Gillham, R.W.; Reardon, E.J. Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies. Corros. Sci. 1998, 40, 371–389. [Google Scholar] [CrossRef]
- Vega, A.; Fiuza, A.; Guimaraes, F. Insight into the phenomenology of the Cr(VI) reduction by metallic iron using an electron probe microanalyzer. Langmuir 2010, 26, 11980–11986. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Zhang, T.C.; Shea, P.J.; Comfort, S.D. Effect of iron coating and selected cations on nitrate reduction by iron. J. Environ. Qual. 2003, 32, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Gheju, M.; Balcu, I. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J. Hazard. Mater. 2011, 196, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Gatcha-Bandjun, N.; Noubactep, C.; Loura Mbenguela, B. Water treatment with Fe0/H2O systems: Learning from internal electrolysis. Fresenius Environ. Bull. 2014, 23, 2663–2669. [Google Scholar]
- Kadu, B.S.; Sathe, Y.D.; Ingle, A.B.; Chikate, R.C.; Patil, K.R.; Rode, C.V. Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl. Catal. B 2011, 104, 407–414. [Google Scholar] [CrossRef]
- Kadu, B.S.; Chikate, R.C. nZVI based nanocomposites: Role of noble metal and clay support on chemisorptive removal of Cr(VI). J. Environ. Chem. Eng. 2013, 1, 320–327. [Google Scholar] [CrossRef]
- Williams, A.G.B.; Scherer, M.M. Kinetics of Cr(VI) reduction by carbonate green rust. Environ. Sci. Technol. 2001, 35, 3488–3494. [Google Scholar] [CrossRef] [PubMed]
- Fendorf, S.E.; Wielinga, B.; Hansel, C. Chromium transformations in natural environments: The role of biological and abiological processes in chromium(VI) reduction. Int. Geol. Rev. 2000, 42, 691–701. [Google Scholar] [CrossRef]
- He, H.; Wu, D.; Wang, Q.; Luo, C.; Duan, N. Sequestration of hexavalent chromium by Fe(II)/Fe(III) hydroxides: Structural Fe(II) reactivity and PO43− effect. Chem. Eng. J. 2016, 283, 948–955. [Google Scholar] [CrossRef]
- Tomaszewski, E.J.; Lee, S.; Rudolph, J.; Xu, H.; Ginder-Vogel, M. The reactivity of Fe(II) associated with goethite formed during short redox cycles toward Cr(VI) reduction under oxic conditions. Chem. Geol. 2017, 464, 101–109. [Google Scholar] [CrossRef]
- Ai, Z.; Cheng, Y.; Zhang, L.; Qiu, J. Efficient removal of Cr(VI) from aqueous solution with Fe and Fe2O3 core-shell nanowires. Environ. Sci. Technol. 2008, 42, 6955–6960. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, H.S.; Virtanen, S.; Ryan, M.P.; Schmuki, P.; Oblonski, L.J. Incorporation of Cr in the passive film on Fe from chromate solutions. Electrochim. Acta 2002, 47, 3127–3130. [Google Scholar] [CrossRef]
- Lai, K.C.K.; Lo, I.M. Removal of chromium(VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environ. Sci. Technol. 2008, 42, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Cao, J.; Zhang, W.X. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-Ray Photoelectron Spectroscopy (HR-XPS). Ind. Eng. Chem. Res. 2008, 47, 2131–2139. [Google Scholar] [CrossRef]
- Fuller, S.J.; Stewartm, D.I.; Burke, I.T. Chromate reduction in highly alkaline groundwater by zerovalent iron: Implications for its use in a permeable reactive barrier. Ind. Eng. Chem. Res. 2013, 52, 4704–4714. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Johnston, C.P.; Dahal, G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. J. Hazard. Mater. 2012, 201–202, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Gheju, M.; Iovi, A.; Balcu, I. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 1: Effect of feed solution pH. J. Hazard. Mater. 2008, 153, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Gheju, M.; Balcu, I. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size. J. Hazard. Mater. 2010, 182, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Guan, X.; Sun, Y.; Choi, W.; Qin, H.; Wang, J.; Qiao, J.; Li, L. Weak magnetic field accelerates chromate removal by zero-valent iron. J. Environ. Sci. 2015, 31, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Melitas, N.; Chufe-Moscoso, O.; Farrell, J. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects. Environ. Sci. Technol. 2001, 35, 3948–3953. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; He, Y.; Lan, Y.; Mao, J.; Chen, S. Influence of complex reagents on removal of chromium(VI) by zero-valent iron. Chemosphere 2008, 72, 870–887. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, H.; Zhang, W.X.; Shi, Z.; Zhao, D.; Guan, X. Enhanced Cr(VI) removal by zero-valent iron coupled with weak magnetic field: Role of magnetic gradient force. Sep. Purif. Technol. 2017, 176, 40–47. [Google Scholar] [CrossRef]
- Mak, M.S.H.; Lo, I.M.C. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron. Chemosphere 2011, 84, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wei, S.; Liu, Y.; Shao, Z. Influence of photoirradation on reduction of hexavalent chromium by zero-valent iron in the presence of organic acids. Desalination 2012, 285, 271–276. [Google Scholar] [CrossRef]
- Crane, R.A.; Noubactep, C. Elemental metals for environmental remediation: Lessons from hydrometallurgy. Fresenius Environ. Bull. 2012, 21, 1192–1196. [Google Scholar]
- Noubactep, C. Processes of contaminant removal in “Fe0-H2O” systems revisited: The importance of co-precipitation. Open Environ. J. 2007, 1, 9–13. [Google Scholar] [CrossRef]
- Noubactep, C. Aqueous contaminant removal by metallic iron: Is the paradigm shifting? Water SA 2011, 37, 419–426. [Google Scholar] [CrossRef]
- Hatfield, A.C. Aqueous Geochemistry of Rhenium and Chromium in Saltstone: Implications for Understanding Technetium Mobility in Saltstone. Master’s Thesis, Clemson University, Clemson, SC, USA, 2013. [Google Scholar]
- Fendorf, S.E. Surface reactions of chromium in soil and waters. Geoderma 1995, 67, 55–71. [Google Scholar] [CrossRef]
- Kimbrough, D.E.; Cohen, Y.; Winer, A.M. A critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 1999, 29, 1–46. [Google Scholar] [CrossRef]
- Henderson, T. Geochemical reduction of hexavalent chromium in the Trinity Sand aquifer. Ground Water 1994, 32, 477–486. [Google Scholar] [CrossRef]
- Rai, D.; Sass, B.M.; Moore, D.A. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 1987, 26, 345–349. [Google Scholar] [CrossRef]
- Saha, R.; Nandi, R.; Saha, B. Sources and toxicity of hexavalent chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Stout, M.D.; Herbert, R.A.; Kissling, G.E.; Collins, B.J.; Travlos, G.S.; Witt, K.L.; Melnick, R.L.; Abdo, K.M.; Malarkey, D.E.; Hooth, M.J. Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environ. Health Perspect. 2009, 117, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Stohs, S.J.; Downs, B.W. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 2002, 180, 5–22. [Google Scholar] [CrossRef]
- Costa, M. Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl. Pharmacol. 2003, 188, 1–5. [Google Scholar] [CrossRef]
- Anderson, R.A. Chromium as an essential nutrient for humans. Regul. Toxicol. Pharm. 1997, 26, S35–S41. [Google Scholar] [CrossRef] [PubMed]
- Pechova, A.; Pavlata, L. Chromium as an essential nutrient: A review. Vet. Med. 2007, 52, 1–18. [Google Scholar] [CrossRef]
- Lee, G.; Hering, J.G. Oxidative dissolution of chromium(III) hydroxide at pH 9, 3, and 2 with product inhibition at pH 2. Environ. Sci. Technol. 2005, 39, 4921–4928. [Google Scholar] [CrossRef] [PubMed]
- White, A.F.; Peterson, M.L. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides. Geochim. Cosmochim. Acta 1996, 60, 3799–3814. [Google Scholar] [CrossRef]
- Kendelewicz, T.; Liu, P.; Doyle, C.S.; Brown, G.E., Jr. Spectroscopic study of the reaction of aqueous Cr(VI) with Fe3O4(111) surfaces. Surf. Sci. 2000, 469, 144–163. [Google Scholar] [CrossRef]
- Gheju, M.; Balcu, I.; Vancea, C. An investigation of Cr(VI) removal with metallic iron in the co-presence of sand and/or MnO2. J. Environ. Manag. 2016, 170, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C.; Meinrath, G.; Merkel, J.B. Investigating the mechanism of uranium removal by zerovalent iron materials. Environ. Chem. 2005, 2, 235–242. [Google Scholar]
- Vanysek, P. Electrochemical Series. In CRC Handbook of Chemistry and Physics; Haynes, W.M., Ed.; CRC Press: Cleveland, OH, USA, 2010. [Google Scholar]
- Pettine, M.; D’Ottone, L.; Campanella, L.; Millero, F.J.; Passino, R. The reduction of chromium (VI) by iron (II) in aqueous solutions. Geochim. Cosmochim. Acta 1998, 62, 1509–1519. [Google Scholar] [CrossRef]
- Schroeder, D.C.; Lee, G.F. Potential transformations of chromium in natural waters. Water Air Soil Pollut. 1975, 4, 355–365. [Google Scholar] [CrossRef]
- Kotas, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283. [Google Scholar] [CrossRef]
- Rao, L.; Zhang, Z.; Friese, J.I.; Ritherdon, B.; Clark, S.B.; Hess, N.H.; Rai, D. Oligomerization of chromium(III) and its impact on the oxidation of chromium(III) by hydrogen peroxide in alkaline solutions. J. Chem. Soc. Dalton Trans. 2002, 0, 267–274. [Google Scholar] [CrossRef]
- Palmer, C.D.; Puls, R.W. Natural Attenuation of Hexavalent Chromium in Groundwater and Soils; USEPA 154015-941505, Office of Research and Development: Ada, OK, USA, 1994. [Google Scholar]
- Richard, F.C.; Bourg, A.C.M. Aqueous geochemistry of chromium: A review. Water Res. 1991, 25, 807–816. [Google Scholar] [CrossRef]
- Noubactep, C. Contaminant reduction at the surface of elemental iron: The end of a myth. Wasser, Luft und Boden - TerraTech Supplement 2006, 50(11/12), TT11-14. (In German) [Google Scholar]
- Noubactep, C. About the operation of reactive walls: the origin of the premise that quantitative contaminant reduction occurs at the surface of elemental iron materials. Wasser, Luft und Boden - TerraTech Supplement 2007, 50(3/4), TT10-14. (In German) [Google Scholar]
- Noubactep, C. The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 2010, 36, 663–670. [Google Scholar] [CrossRef]
- Noubactep, C. An analysis of the evolution of reactive species in Fe0/H2O systems. J. Hazard. Mater. 2009, 168, 1626–1631. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C. Designing metallic iron packed-beds for water treatment: A critical review. Clean Soil Air Water 2016, 44, 411–421. [Google Scholar] [CrossRef]
- Mak, M.S.H.; Lo, I.M.C.; Liu, T. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration. Water Res. 2011, 45, 6575–6584. [Google Scholar] [CrossRef] [PubMed]
- Hussam, A.; Munir, A.K.M. A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health A 2007, 42, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Hussam, A. Contending with a development disaster: SONO filters remove arsenic from well water in Bangladesh. Innovations 2009, 4, 89–102. [Google Scholar] [CrossRef]
- Neumann, A.; Kaegi, R.; Voegelin, A.; Hussam, A.; Munir, A.K.M.; Hug, S.J. Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environ. Sci. Technol. 2013, 47, 4544–4554. [Google Scholar] [CrossRef] [PubMed]
- Banerji, T.; Chaudhari, S. A cost-effective technology for arsenic removal: Case study of zerovalent iron-based IIT Bombay arsenic filter in West Bengal. In Water and Sanitation in the New Millennium; Nath, K., Sharma, V., Eds.; Springer: New Delhi, India, 2017; pp. 127–137. [Google Scholar]
- Khan, A.H.; Rasul, S.B.; Munir, A.K.M.; Habibuddowla, M.; Alauddin, M.; Newaz, S.S.; Hussam, A. Appraisal of a simple arsenic removal method for groundwater of Bangladesh. J. Environ. Sci. Health A 2000, 35, 1021–1041. [Google Scholar] [CrossRef]
- Ahmed, J.U.; Tinne, W.S.; Al-Amin, M.; Rahanaz, M. Social innovation and SONO filter for drinking water. Soc. Bus. Rev. 2018, 13, 15–26. [Google Scholar] [CrossRef]
- Care, S.; Crane, R.; Calabro, P.S.; Ghauch, A.; Temgoua, E.; Noubactep, C. Modeling the permeability loss of metallic iron water filtration systems. Clean Soil Air Water 2013, 41, 275–282. [Google Scholar] [CrossRef]
- Devonshire, E. The purification of water by means of metallic iron. J. Frankl. Inst. 1890, 129, 449–461. [Google Scholar] [CrossRef]
- World Health Organization (WHO); United Nations Children’s Fund (UNICEF). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization (WHO): Geneva, Switzerland; United Nations Children’s Fund (UNICEF): Geneva, Switzerland, 2017. [Google Scholar]
Electrode Reaction | E0 (V) | Eq. | Reference |
---|---|---|---|
2H2O + 2e− ⇔ H2 + 2HO− | −0.83 | (17) | [132] |
Cr3+ + 3e− ⇔ Cr0 | −0.74 | (18) | [132] |
Fe2+ + 2e− ⇔ Fe0 | −0.44 | (19) | [132] |
CrO42− + 4H2O + 3e− ⇔ Cr(OH)3 + 5OH− | −0.13 | (20) | [132] |
2H+ + e− ⇔ H2 | 0.00 | (21) | [132] |
Fe3+ + e− ⇔ Fe2+ | 0.77 | (22) | [132] |
O2 + 2H2O + 4e− ⇔ 4HO− | 0.40 | (23) | [132] |
O2 + 4H+ + 4e− ⇔ 2H2O | 1.23 | (24) | [132] |
HCrO4− + 7H+ + 3e− ⇔ Cr3+ + 4H2O | 1.35 | (25) | [132] |
Electrochemical reactions (involving Fe0) | |||
3Fe0 + 2CrO42− + 8H2O ⇔ 3Fe2+ + 2Cr(OH)3 + 10 OH− | (26) | [6] | |
Fe0 + 2H2O ⇔ Fe2+ + H2 + 2HO− | (27) | [6] | |
Fe0 + 2Fe3+ ⇔ 3Fe2+ | (28) | [25] | |
2Fe0 + O2 + 2H2O ⇔ 2Fe2+ + 4OH− | (29) | [29] | |
Chemical reactions | |||
4Fe2+ + O2 + 2H2O ⇔ 4Fe3+ + 4OH− | (30) | [27] | |
3Fe2+ads + CrO42− + 8H2O ⇔ Cr(OH)3 + 3Fe(OH)3 + 4H+ | (31) | [133] | |
2Cr(OH)2+ + 3/2O2 + H2O ⇔ 2CrO42− + 6H+ | (32) | [134] | |
H2CrO4 ⇔ HCrO4− + H+ | (33) | [135] | |
HCrO4− + H2O ⇔ CrO42− + H3O+ | (34) | [135] | |
HCrO4− + HCrO4− ⇔ Cr2O72− + H2O | (35) | [135] | |
[Cr(OH2)6]3+ + H2O ⇔ [Cr(OH2)5(OH)]2+ + H3O+ | (36) | [135] | |
[Cr(OH2)5(OH)]2+ + H2O ⇔ [Cr(OH2)4(OH)2]+ + H3O+ | (37) | [135] | |
[Cr(OH2)4(OH)2]+ + H2O ⇔ [Cr(OH2)3(OH)3] + H3O+ | (38) | [135] | |
[Cr(OH2)3(OH)3] + H2O ⇔ [Cr(OH2)2(OH)4]− + H3O+ | (39) | [135] | |
2Cr3+ + 2H2O ⇔ Cr2(OH)24+ + 2H+ | (40) | [136] | |
3Cr3+ + 4H2O ⇔ Cr3(OH)45+ + 4H+ | (41) | [136] | |
4Cr3+ + 6H2O ⇔ Cr4(OH)66+ + 6H+ | (42) | [136] | |
(1 − x)Fe3+ + (x)Cr3+ + 2H2O ⇔ CrxFe1−x(OOH) + 3H+ | (43) | [76] | |
(1 − x)Fe3+ + (x)Cr3+ + 3H2O ⇔ CrxFe1−x(OH)3 + 3H+ | (44) | [76] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheju, M. Progress in Understanding the Mechanism of CrVI Removal in Fe0-Based Filtration Systems. Water 2018, 10, 651. https://doi.org/10.3390/w10050651
Gheju M. Progress in Understanding the Mechanism of CrVI Removal in Fe0-Based Filtration Systems. Water. 2018; 10(5):651. https://doi.org/10.3390/w10050651
Chicago/Turabian StyleGheju, Marius. 2018. "Progress in Understanding the Mechanism of CrVI Removal in Fe0-Based Filtration Systems" Water 10, no. 5: 651. https://doi.org/10.3390/w10050651
APA StyleGheju, M. (2018). Progress in Understanding the Mechanism of CrVI Removal in Fe0-Based Filtration Systems. Water, 10(5), 651. https://doi.org/10.3390/w10050651