Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam
Abstract
:1. Introduction
2. Study Area and Data Used
2.1. Study Area
2.2. Data Used
2.2.1. Moderate Resolution Imaging Spectroradiometer (MODIS) Data
2.2.2. Precipitation & Soil Moisture Data
2.2.3. Crop Yield and Forest Fires
3. Vegetation Indices for Drought Monitoring
3.1. Greenness Related Vegetation Indices
3.1.1. Normalized Difference Vegetation Index (NDVI)
3.1.2. Vegetation Condition Index (VCI)
3.2. Water Related Vegetation Indices
3.2.1. Normalized Difference Water Index (NDWI)
3.2.2. Land Surface Water Index (LSWI)
3.3. Temperature Related Vegetation Indices
3.3.1. Land Surface Temperature (LST)
3.3.2. Temperature Condition Index (TCI)
3.4. Combined Vegetation Indices
3.4.1. Vegetation Health Index (VHI)
3.4.2. Normalized Difference Drought Index (NDDI)
4. Methodology
4.1. Calculation of VIs
4.2. Verifying VI Results with Precipitation and Soil Moisture
4.3. Verifying VI Results with Crop Yield and Forest Fires
5. Results and Discussion
5.1. VIs Based Drought Identification
5.2. Correlation between VIs and Other Data
5.3. Comparison of VIs Result with Crop Yield and Forest Fires
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kogan, F.N. Global drought watch from space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- Hulse, J.H.; Escott, V.J. Drought–Inevitable and Unpredictable the Pattern and Consequences of Recurrent Drought. Interdiscip. Sci. Rev. 1986, 11, 346–358. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought (Vol. 30); US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Modarres, R. Streamflow drought time series forecasting. Stoch. Environ. Res. Risk Assess. 2007, 21, 223–233. [Google Scholar] [CrossRef]
- Bhuiyan, C. Various drought indices for monitoring drought condition in Aravalli terrain of India. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Moser, C. The asset vulnerability framework: Reassessing urban poverty reduction strategies. World Dev. 1998, 26, 1–19. [Google Scholar] [CrossRef]
- Tatem, A.J.; Goetz, S.J.; Hay, S.I. Fifty years of earth observation satellites: Views from above have lead to countless advances on the ground in both scientific knowledge and daily life. Am. Sci. 2008, 96, 390–398. [Google Scholar] [CrossRef] [PubMed]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote Sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–481. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for Remote Sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B., III. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Bajgain, R.; Xiao, X.; Wagle, P.; Basara, J.; Zhou, Y. Sensitivity analysis of vegetation indices to drought over two tallgrass prairie sites. ISPRS J. Photogramm. Remote Sens. 2015, 108, 151–160. [Google Scholar] [CrossRef]
- Bajgain, R.; Xiao, X.; Basara, J.; Wagle, P.; Zhou, Y.; Zhang, Y.; Mahan, H. Assessing agricultural drought in summer over Oklahoma Mesonet sites using the water-related vegetation index from MODIS. Int. J. Biometeorol. 2017, 61, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Gutman, G.G. Towards monitoring droughts from space. J. Clim. 1990, 3, 282–295. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.L. Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data. Remote Sens. Environ. 2002, 79, 199–212. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using MODIS Land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys. Res. Lett. 2007, 35. [Google Scholar] [CrossRef]
- Buch-Hansen, M.; Khanh, N.N.; Anh, N.H. Paradoxes in Adaptation: Economic Growth and Socio-Economic Differentiation. A Case Study of Mid-Central Vietnam. In On the Frontiers of Climate and Environmental Change; Bruun, O., Casse, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 23–41. [Google Scholar]
- Vu, N.Q.; Schroll, H.; Andersen, J.; Lund, S. Is Climate Change a Reality for Agriculture in Quang Nam Province? In On the Frontiers of Climate and Environmental Change; Bruun, O., Casse, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 43–69. [Google Scholar]
- Food and Agriculture Organization. Viet Nam and FAO Achievements and Success Stories. FAO: Rome, Italy. Available online: http://www.fao.org/docrep/015/an165e/an165e00.pdf (accessed on 1 April 2018).
- General Statistics Office of Vietnam. Statistical Handbook of Vietnam 2016; Statistical Publishing House: Hanoi, Vietnam, 2017. [Google Scholar]
- Buurman, J.; Bui, D.D.; Goedbloed, A.; Du, T.L.T.; Vu, H.H.; Chu, Y. Measuring and Monitoring Droughts and Drought Risks in the Vu Gia—Thu Bon River Basin. In Water Security in a Changing Era, Proceedings of the 4th International Symposium & Exhibition of Vietnam Water Cooperation Initiative, Hanoi, Vietnam, 19 October 2015; Tong, T.N., Bui, D.D., Vu, T.T., Du, T.L.T., Eds.; Vietnam Water Cooperation Initiative: Hanoi, Vietnam, 2015. [Google Scholar]
- Du, T.L.T.; Bui, D.D.; Buurman, J.; Quach, X.T. Towards adaptive governance for urban drought resilience: The case of Da Nang, Vietnam. Int. J. Water Resour. Dev. 2018, 1–19. [Google Scholar] [CrossRef]
- Nguyen, T.S.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Minh, V.Q. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. Geoinform. 2012, 18, 417–427. [Google Scholar]
- Tran, T.H.; Campbell, J.B.; Tran, T.D.; Tran, H.T. Monitoring drought vulnerability using multispectral indices observed from sequential Remote Sens. (Case Study: Tuy Phong, Binh Thuan, Vietnam). GISci. Remote Sens. 2017, 54, 1–18. [Google Scholar] [CrossRef]
- Jain, V.K.; Pandey, R.P.; Jain, M.K.; Byun, H.R. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather Clim. Extrem. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Bayissa, Y.; Maskey, S.; Tadesse, T.; van Andel, S.J.; Moges, S.; van Griensven, A.; Solomatine, D. Comparison of the Performance of Six Drought Indices in Characterizing Historical Drought for the Upper Blue Nile Basin, Ethiopia. Geosciences 2018, 8, 81. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. Satellite Remote Sens. applications for surface soil moisture monitoring: A. review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Evaluation of drought indices based on thermal Remote Sens. of evapotranspiration over the continental United States. J. Clim. 2011, 24, 2025–2044. [Google Scholar] [CrossRef]
- Da Nang Statistics Office. Da Nang Statistical Yearbook 2016; Statistical Publishing House: Da Nang, Vietnam, 2017. [Google Scholar]
- Quang Nam Statistics Office. Quang Nam Statistical Yearbook 2016; Statistical Publishing House: Quang Nam, Vietnam, 2017. [Google Scholar]
- DCCCO. Current situation and transboundary region issues that need to be tackled in Vu Gia Thu Bon river basin under framework of Global Resilience Partnership Project. In Proceedings of the first Meeting of Vu Gia Thu Bon River basin Coordinating Board, Danang, Vietnam, 23 February 2017. [Google Scholar]
- Chau, V.N. Assessing the Impacts of Extreme Floods on Agriculture in Vietnam: Quang Nam Case Study. A Dissertation Presented in Partial Fulfilment OF THE Requirements for the Degree of Doctor of Philosophy in Environmental Management at Massey University, Manawatu, New Zealand. Ph.D. Thesis, Massey University, Wellington, New Zealand, 2014. [Google Scholar]
- Lee, H.; Yuan, T.; Jung, H.C.; Beighley, E. Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sens. Environ. 2015, 159, 70–79. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; NASA EOSDIS LP DAAC: Washington, DC, USA, 2015.
- Tucker, C.J. Remote Sens. of leaf water content in the near infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S.Y.; Ray, J.P. MODIS Surface Reflectance User’s Guide; MODIS Land Surface Reflectance Science Computing Facility, Version, 1; NASA: Washington, DC, USA, 2011.
- Wan, Z. Collection-6 MODIS Land Surface Temperature Products Users’ Guide. Available online: https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod11_user_guide.pdf (accessed on 1 April 2018).
- Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [Google Scholar] [CrossRef]
- Ngo, Đ.M.; Mai, V.T.; Reiner, W.; Tran, Đ.H.; Nguyen, M.K. Farmer’s Perception and Farming Practices in Rice Production under Changing Climate: Case Study in Quảng Nam Province. VNU J. Sci. Earth Environ. Sci. 2014, 30, 25–40. [Google Scholar]
- Von Platen-Hallermund, T. Thorsen, Natural Resource Management Impact on Vulnerability in Relation to Climate Change: A Case in a Micro-Scale Vietnamese Context. In On the Frontiers of Climate and Environmental Change; Bruun, O., Casse, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 155–177. [Google Scholar]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2001, 104, 185–228. [Google Scholar] [CrossRef]
- Giambelluca, T.W. Hydrology of altered tropical forest. Hydrol. Process. 2002, 16, 1665–1669. [Google Scholar] [CrossRef]
- De Koninck, R. Deforestation in Viet Nam; IDRC: Ottawa, ON, Canada, 1999. [Google Scholar]
- Barney, K. Central Plans and Global Exports: Tracking Vietnams Forestry Commodity Chains and Export Links to China. China and Forest Trade in the Asia-Pacific Region: Implications for Forests and Livelihoods; Forest Trends: Washington, DC, USA, 2005. [Google Scholar]
- McNamara, S.; Tinh, D.V.; Erskine, P.D.; Lamb, D.; Yates, D.; Brown, S. Rehabilitating degraded forest land in central Vietnam with mixed native species plantings. Forest Ecol. Manag. 2006, 233, 358–365. [Google Scholar] [CrossRef]
- Le, A.D.; Vu, L.T.T. Climate Change’s Impact on Natural Hazards in Quang Nam Province, Mid-Central Vietnam. In On the Frontiers of Climate and Environmental Change; Bruun, O., Casse, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 91–98. [Google Scholar]
- Da Nang Statistics Office. Da Nang Statistical Yearbook 2010; Statistical Publishing House: Da Nang, Vietnam, 2011. [Google Scholar]
- Quang Nam Statistics Office. Quang Nam Statistical Yearbook 2010; Statistical Publishing House: Quang Nam, Vietnam, 2017. [Google Scholar]
- Da Nang Statistics Office. Da Nang Statistical Yearbook 2006; Statistical Publishing House: Da Nang, Vietnam, 2007. [Google Scholar]
- Quang Nam Statistics Office. Quang Nam Statistical Yearbook 2006; Statistical Publishing House: Quang Nam, Vietnam, 2007. [Google Scholar]
- General Statistics Office of Vietnam. Statistics. Available online: https://www.gso.gov.vn/Default_en.aspx?tabid=766 (accessed on 1 April 2018).
- Zhu, J.; Miller, A.E.; Lindsay, C.; Broderson, D.; Heinrichs, T.; Martyn, P. MODIS NDVI Products and Metrics User Manual, Version 1.0; Geographic Information Network for Alaska: Anchorage, AK, USA, 2013. [Google Scholar]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Narasimhan, B.; Srinivasan, R.; Whittaker, A.D. Whittaker Estimation of potential evapotranspiration from NOAA-AVHRR satellite. Appl. Eng. Agric. 2003, 19, 309–318. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspi-ration and moisture stress across the continental United States based on thermal remote sensing: 1. Model. formulation. J. Geophys. Res. 2007, 112, D10117. [Google Scholar] [CrossRef]
- Seiler, R.; Kogan, F.N.; Sullivan, J. AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Adv. Space Res. 1998, 21, 481–484. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Sun, D.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 2007, 34, 34. [Google Scholar] [CrossRef]
- Kogan, F.N. World droughts in the new millenium from AVHRR-based Vegetation Health Indices. Eos Trans. Am. Geophys.Union 2002, 83, 562–563. [Google Scholar] [CrossRef]
- Cheng-Lin, L.; Jian-Jun, W. Crop drought monitoring using MODIS NDDI over mid-territory of China. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 3, p. III-883. [Google Scholar]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor Remote Sens. data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Khampeera, A.; Yongchalermchai, C.; Techato, K. Drought Monitoring using Drought Indices and GIS Techniques in Kuan Kreng Peat Swamp, Southern Thailand. Walailak J. Sci. Technol. 2017, 15, 357–370. [Google Scholar]
- Ogashawara, I.; Bastos, V.D.S.B. A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sens. 2012, 4, 3596–3618. [Google Scholar] [CrossRef]
- Jackson, R.B.; Canadell, J.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Vnexpress. Topic: 2003 Drought. Available online: https://vnexpress.net/han-han-2003/topic-12259.html (accessed on 1 April 2018).
- Asian Disaster Preparedness Center. The Role of Local Institutions in Reducing Vulnerability to Recurrent Natural Disasters and in Sustainable Livelihoods Development. Available online: http://www.fao.org/docrep/007/ae080e/ae080e03.htm (accessed on 1 April 2018).
Name of Vegetation Indices | Full Name | Formula | References |
---|---|---|---|
1. Vegetation greenness indices | |||
NDVI | Normalized Difference Vegetation Index | (ρ858 − ρ650)/(ρ858+ ρ650) | [12] |
EVI | Enhanced Vegetation Index | 2.5 × (ρ858 – ρ650)/(ρ858 + 6 × ρ650 − 7 × ρ469 + 1) | [13] |
VCI | Vegetation Condition Index | (NDVI − NDVImin)/(NDVImax − NDVImin) | [14] |
2. Vegetation water indices | |||
NDWI | Normalized Difference Water Index | (ρ858 − ρ1240)/(ρ858 + ρ1240) or (ρ858 − ρ2130)/(ρ858 + ρ2130) | [15] [25] |
LSWI | Land Surface Water Index | (ρ858 − ρ1640)/(ρ858 + ρ1640) | [16,17] |
NMDI | Normalized Multiband Drought Index | (ρ860 − (ρ1640 – ρ2130))/(ρ860 + (ρ1640 − ρ2130)) | [36] |
3. Vegetation temperature indices | |||
LST | Land Surface Temperature | [20] | |
TCI | Temperature Condition Index | 100 × (LSTmax − LST)/(LSTmax − LSTmin) | [14] |
NDTI | Normalized Difference Temperature Index | (T∞ − Ts)/(T∞ − T0) | [21] |
ESI | Evapotranspiration Stress Index | ƒPET = ET/PET | [37] |
4. Combined indices | |||
VTCI | Vegetation Temperature Condition Index | VTCI = (LSTNDVIi max − LSTNDVIi)/(LSTNDVIi max − LSTNDVIi min) | [23,24] |
VHI | Vegetation Health Index | α × VCI + (1 − α) × TCI | [14] |
TVDI | Temperature Vegetation Dryness Index | (LST − LSTmin)/(a + b × NDVI − LSTmin) | [22] |
NDDI | Normalized Difference Drought Index | (NDVI − NDWI)/(NDVI + NDWI) | [25] |
Content | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crop calendar | ||||||||||||
Winter-Spring Rice | ||||||||||||
Summer-Autumn Rice | ||||||||||||
Corn | ||||||||||||
Beans | ||||||||||||
Other vegetables | ||||||||||||
Climatic conditions | ||||||||||||
Flood season | ||||||||||||
Main flood period | ||||||||||||
Normal dry period | ||||||||||||
Dry period during dry spells |
Year | Winter Spring Rice Crop | Summer Autumn Rice Crop |
---|---|---|
Quintal/ha | Quintal/ha | |
2002 | −2.23 | |
2005 | −1 | −1.41 |
2010 | −1.24 | |
2012 | −1.15 | |
2016 | −3.81 |
Categories | Variables | Examined VIs | Other Information | |||||||
---|---|---|---|---|---|---|---|---|---|---|
NDWI | LSWI | VCI | TCI | VHI | NDDI | NDVI | LST | In-Situ Precipitation | ||
(a) Rice paddy fields | ||||||||||
Examined VIs | LSWI | 0.82 | ||||||||
VCI | 0.81 | 0.79 | ||||||||
TCI | 0.30 | 0.32 | 0.14 | |||||||
VHI | 0.78 | 0.77 | 0.78 | 0.71 | ||||||
NDDI | −0.57 | −0.31 | −0.01 | −0.43 | −0.31 | |||||
Other information | NDVI | 0.80 | 0.78 | 0.99 | 0.11 | 0.76 | 0.02 | |||
LST | −0.31 | −0.32 | −0.13 | −1.00 | −0.71 | 0.45 | −0.10 | |||
In-situ Precipitation | 0.14 | 0.05 | −0.18 | 0.11 | −0.04 | −0.48 | −0.23 | −0.15 | ||
SM | 0.33 | 0.17 | −0.06 | 0.52 | 0.32 | −0.65 | −0.10 | −0.56 | 0.66 | |
(b) Forest areas | ||||||||||
Examined VIs | LSWI | 0.84 | ||||||||
VCI | 0.74 | 0.68 | ||||||||
TCI | −0.21 | −0.23 | −0.27 | |||||||
VHI | 0.54 | 0.41 | 0.74 | 0.44 | ||||||
NDDI | −0.79 | −0.61 | −0.18 | 0.04 | −0.14 | |||||
Other information | NDVI | 0.74 | 0.68 | 1.00 | −0.27 | 0.74 | −0.18 | |||
LST | 0.21 | 0.23 | 0.27 | −1.00 | −0.44 | −0.04 | 0.27 | |||
In-situ Precipitation | 0.24 | 0.24 | 0.23 | 0.25 | 0.35 | −0.14 | 0.23 | −0.25 | ||
SM | 0.39 | 0.37 | 0.39 | 0.37 | 0.59 | −0.29 | 0.39 | −0.37 | 0.57 |
Model | Observation | Multiple R | R Square | Adjusted R Square | Intercept | Soil Moisture- Slope | Precipitation- Slope |
---|---|---|---|---|---|---|---|
Rice paddy fields | |||||||
NDWI, P, SM model | 76.00 | 0.35 | 0.12 | 0.10 | 0.30 | 0.01 | 0.00 |
LSWI, P, SM model | 84.00 | 0.17 | 0.03 | 0.01 | 0.11 | 0.00 | 0.00 |
VCI, P, SM model | 77.00 | 0.10 | 0.01 | −0.02 | 55.47 | 0.11 | −0.29 |
TCI, P, SM model | 82.00 | 0.56 | 0.32 | 0.30 | −25.75 | 4.62 | −0.67 |
VHI, P, SM model | 77.00 | 0.34 | 0.12 | 0.09 | 15.46 | 2.27 | −0.28 |
NDDI, P, SM model | 76.00 | 0.70 | 0.49 | 0.47 | 0.38 | −0.01 | 0.00 |
Forest areas | |||||||
NDWI, P, SM model | 49.00 | 0.36 | 0.13 | 0.09 | 0.42 | 0.00 | 0.00 |
LSWI, P, SM model | 65.00 | 0.40 | 0.16 | 0.13 | 0.15 | 0.00 | 0.00 |
VCI, P, SM model | 49.00 | 0.35 | 0.12 | 0.09 | 20.79 | 2.03 | 0.01 |
TCI, P, SM model | 61.00 | 0.29 | 0.09 | 0.05 | 28.64 | 1.10 | 0.01 |
VHI, P, SM model | 49.00 | 0.56 | 0.32 | 0.29 | 21.13 | 1.73 | 0.00 |
NDDI, P, SM model | 49.00 | 0.25 | 0.06 | 0.02 | 0.13 | 0.00 | 0.00 |
Drought Index | NDWI | LSWI | VCI | TCI | VHI | NDDI |
---|---|---|---|---|---|---|
Dry season 2002 (January 2001–September 2002) | ||||||
Occurrence (Duration) | Apr–May (2) | Apr–May (2) | Apr–May (2) | May–Aug (4) | Apr–May (2) | Apr–Apr (1) |
Max Intensity (Mean intensity) | 0.2 (0.24) | 0 (0.05) | 10.67 (16.09) | 17.98 (32.52) | 15.8 (22.41) | 0.39 (0.39) |
Dry season 2005 (December 2004–September 2005) | ||||||
Occurrence (Duration) | May–May (1) | May–Sept (2) | May–May (1) | Sept–Sept (1) | ||
Max Intensity (Mean intensity) | 0.09 (0.09) | 19.52 (28.18) | 31.14 (31.14) | 0.2 (0.2) | ||
Dry season 2010 (December 2009–September 2010) | ||||||
Occurrence (Duration) | Apr–May (2) | Apr–May (2) | Dec–May (2) | Apr–Sept (4) | Apr–May (2) | Apr–Apr (1) |
Max Intensity (Mean intensity) | 0.24 (0.26) | −0.01 (0.04) | 18.88 (23.62) | 15.09 (28.8) | 19.14 (23.69) | 0.55 (0.55) |
Dry season 2012 (December 2011–September 2012) | ||||||
Occurrence (Duration) | May–May (1) | May–May (1) | May–May (1) | May–Sept (5) | May–May (1) | May–May (1) |
Max Intensity (Mean intensity) | 0.27 (0.27) | 0.01 (0.01) | 18.88 (23.61) | 21.52 (31.9) | 24 (24) | 0.27 (0.27) |
Dry season 2016 (December 2015–September 2016) | ||||||
Occurrence (Duration) | Apr–Apr (1) | Apr–May (2) | Dec–May (2) | Apr–Aug (5) | Apr–May (2) | Apr–Apr (1) |
Max Intensity (Mean intensity) | 0.2 (0.20) | 0 (0.03) | 26.52 (28.05) | 24.77 (31.72) | 24.73 (27.53) | 0.4 (0.4) |
Drought Index | VCI | TCI | VHI |
---|---|---|---|
Forest Fire in 2002 | |||
Occurrence (Duration) | Jan–Jan (1) | Mar–Aug (6) | Apr–May (2) |
Max Intensity (Mean intensity) | 14.43 (14.43) | 10.44 (26.01) | 25.24 (25.76) |
Forest Fire in 2003 | |||
Occurrence (Duration) | Apr–Apr (1) | Apr–Sept (3) | Apr–Apr (1) |
Max Intensity (Mean intensity) | 39.09 (39.09) | 20.94 (27.86) | 35.94 (35.94) |
Forest Fire in 2005 | |||
Occurrence (Duration) | Jan–Jan (1) | Apr–Sept (5) | Apr–Apr (1) |
Max Intensity (Mean intensity) | 24.82 (24.82) | 14.03 (14.03) | 36.67 (36.67) |
Forest Fire in 2010 | |||
Occurrence (Duration) | May–May (1) | May–Jun (2) | May–May (1) |
Max Intensity (Mean intensity) | 30.54 (30.54) | 34.26 (35.28) | 32.4 (32.4) |
Forest Fire in 2012 | |||
Occurrence (Duration) | Jan–Feb (2) | Apr–Aug (5) | Jun–Jun (1) |
Max Intensity (Mean intensity) | 28.97 (33.85) | 17.29 (26.76) | 32.51 (32.51) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, T.L.T.; Bui, D.D.; Nguyen, M.D.; Lee, H. Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water 2018, 10, 659. https://doi.org/10.3390/w10050659
Du TLT, Bui DD, Nguyen MD, Lee H. Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water. 2018; 10(5):659. https://doi.org/10.3390/w10050659
Chicago/Turabian StyleDu, Tien Le Thuy, Duong Du Bui, Minh Duc Nguyen, and Hyongki Lee. 2018. "Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam" Water 10, no. 5: 659. https://doi.org/10.3390/w10050659
APA StyleDu, T. L. T., Bui, D. D., Nguyen, M. D., & Lee, H. (2018). Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water, 10(5), 659. https://doi.org/10.3390/w10050659