The Water–Energy–Food Nexus: A Fuzzy-Cognitive Mapping Approach to Support Nexus-Compliant Policies in Andalusia (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fuzzy Cognitive Maps
- Density (D) provides information on the connectivity of the maps. This index is estimated as the relationship between the number of connections and the maximum number of possible connections between the map’s variables:
- Outdegree (od) represents the total strength of connections outflowing from the variable. The index is calculated as the horizontal summation of a variable’s absolute values:
- Indegree (id) computes the total strength of connections inflowing to the variable. The index is estimated as the vertical summation of a variable’s absolute values:
- Centrality (c) of a variable shows the cumulative strength of connections of this variable to other variables. The index is calculated as the sum of the variable’s indegree and outdegree:
2.2. Study Region
2.3. Stakeholders’ Participation
2.4. Data Processing and Analysis
2.5. Scenario Analysis
3. Results
3.1. FCM Outcomes
3.2. Scenario Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoff, H. Understanding the Nexus: Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011; Available online: https://www.sei-international.org/publications?pid=1977 (accessed on 5 March 2018).
- Food and Agriculture Organization (FAO). The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; Available online: http://www.fao.org/3/a-bl496e.pdf (accessed on 5 March 2018).
- Organisation for Economic Co-operation and Development (OECD). The Land-Water-Energy Nexus: Biophysical and Economic Consequences; OECD: Paris, France, 2017. [Google Scholar] [CrossRef]
- Bhaduri, A.; Ringler, C.; Dombrowski, I.; Mohtar, R.; Scheumann, W. Sustainability in the water-energy-food nexus. Water Int. 2015, 40, 723–732. [Google Scholar] [CrossRef]
- Lindberg, C.; Leflaive, X. The water-energy-food-nexus: The imperative of policy coherence for sustainable development. In Coherence for Development-Better Policies for Better Lives-Organization for Economic Co-Operation and Development; OECD: Paris, France, 2015; Volume 6, p. 12. [Google Scholar]
- Rodriguez, D.J.; Delgado, A.; DeLaquil, P.; Sohns, A. Thirsty Energy; World Bank: Washington, DC, USA, 2013; Available online: http://documents.worldbank.org/curated/en/835051468168842442/Thirsty-energy (accessed on 6 March 2018).
- Smajgl, A.; Ward, J. The Water-Food-Energy Nexus in the Mekong Region; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mayor, B.; Lopez-Gunn, E.; Villaroya, F.I.; Montero, E. Application of a water-energy-food nexus framework for the Duero river basin in Spain. Water Int. 2015, 40, 791–808. [Google Scholar] [CrossRef]
- De Strasser, L.; Lipponen, A.; Howells, M.; Stec, S.; Bréthaut, C. A methodology to assess the water energy food ecosystems nexus in transboundary river basins. Water 2016, 8, 59. [Google Scholar] [CrossRef]
- Sušnik, J.; Chew, C.; Domingo, X.; Mereu, S.; Trabucco, A.; Evans, B.; Vamkeridou-Lyroudia, L.; Savic, D.A.; Laspidou, C.; Brouwer, F. Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach. Water 2018, 10, 139. [Google Scholar] [CrossRef]
- Lopez-Gunn, E.; Zorrilla, P.; Prieto, F.; Llamas, M.R. Lost in translation? Water efficiency in Spanish agriculture. Agric. Water Manag. 2012, 108, 83–95. [Google Scholar] [CrossRef]
- Sampedro, D.; Del Moral, L. Tres décadas de política de aguas en Andalucía. Cuad. Geogr. 2014, 53, 36–67. [Google Scholar]
- Salmoral, G.; Garrido, A. The Common Agricultural Policy as a driver of water quality changes: The case of the Guadalquivir River Basin (southern Spain). Bio-Based Appl. Econ. 2015, 4, 103. [Google Scholar] [CrossRef]
- Berbel, J.; Pedraza, V.; Giannoccaro, G. The trajectory towards basin closure of a European river: Guadalquivir. Int. J. River Basin Manag. 2013, 11, 111–119. [Google Scholar] [CrossRef]
- Corominas, J.; Cuevas, R. Análisis crítico de la modernización de regadíos. Pensando el futuro: ¿cómo será el nuevo paradigma? In Efectos de la Modernización de Regadío en España; Berbel, J., Gutiérrez-Martin, C., Eds.; Cajamar Caja Rural: Almería, Spain, 2017; pp. 273–308. ISBN 978-84-95531-83-4. (In Spanish) [Google Scholar]
- Hardy, L.; Garrido, A.; Juana, L. Evaluation of Spain’s water-energy nexus. Int. J. Water Resour. Dev. 2012, 28, 151–170. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, L.; Llamas, M.R. (Eds.) Water, Agriculture and the Environment in Spain: Can We Square the Circle? CRC Press: Delft, The Netherlands, 2012; ISBN 978-0-415-63152-5. [Google Scholar]
- De Marchi, B.; Ravetz, J.R. Participatory Approaches to Environmental Policy; EVE-Concerted Action, Policy Research Brief Number 10; Cambridge Research for the Environment: Cambridge, UK, 2001. [Google Scholar]
- Voinov, A.; Bousquet, F. Modelling with stakeholders. Environ. Model. Softw. 2010, 25, 1268–1281. [Google Scholar] [CrossRef]
- Barton, D.N.; Kuikka, S.; Varis, O.; Uusitalo, L.; Henriksen, H.J.; Borsuk, M.; Linnell, J.D. Bayesian networks in environmental and resource management. Integr. Environ. Assess. Manag. 2012, 8, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, F.; Barreteau, O.; Le Page, C.; Mullon, C.; Weber, J. An environmental modelling approach: The use of multi-agent simulations. Adv. Environ. Ecol. Model. 1999, 113, 122. [Google Scholar]
- Kosko, K. Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 1986, 24, 65–75. [Google Scholar] [CrossRef]
- Voinov, A.; Kolagani, N.; McCall, M.K.; Glynn, P.D.; Kragt, M.E.; Ostermann, F.O.; Pierce, S.A.; Ramu, P. Modelling with stakeholders–next generation. Environ. Model. Softw. 2016, 77, 196–220. [Google Scholar] [CrossRef]
- Argent, R.M.; Sojda, R.S.; Giupponi, C.; McIntosh, B.; Voinov, A.A.; Maier, H.R. Best practices for conceptual modelling in environmental planning and management. Environ. Model. Softw. 2016, 80, 113–121. [Google Scholar] [CrossRef]
- Basco-Carrera, L.; Warren, A.; van Beek, E.; Jonoski, A.; Giardino, A. Collaborative modelling or participatory modelling? A framework for water resources management. Environ. Model. Softw. 2017, 91, 95–110. [Google Scholar] [CrossRef]
- Gray, S.; Voinov, A.; Paolisso, M.; Jordan, R.; BenDor, T.; Bommel, P.; Glynn, P.; Hedelin, B.; Hubacek, K.; Introne, J.; et al. Purpose, processes, partnerships, and products: Four Ps to advance participatory socio-environmental modeling. Ecol. Appl. 2018, 28, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Halbe, J.; Pahl-Wostl, C.; Adamowski, J. A methodological framework to support the initiation, design and institutionalization of participatory modeling processes in water resources management. J. Hydrol. 2018, 556, 701–716. [Google Scholar] [CrossRef]
- Gray, S.A.; Gray, S.; De Kok, J.L.; Helfgott, A.E.; O’Dwyer, B.; Jordan, R.; Nyaki, A. Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems. Ecol. Soc. 2015, 20. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Salmeron, J.L. A review of fuzzy cognitive maps research during the last decade. IEEE Trans. Fuzzy Syst. 2013, 21, 66–79. [Google Scholar] [CrossRef]
- Hobbs, B.F.; Ludsin, S.A.; Knight, R.L.; Ryan, P.A.; Biberhofer, J.; Ciborowski, J.J. Fuzzy cognitive mapping as a tool to define management objectives for complex ecosystems. Ecol. Appl. 2002, 12, 1548–1565. [Google Scholar] [CrossRef]
- Kafetzis, A.; McRoberts, N.; Mouratiadou, I. Using fuzzy cognitive maps to support the analysis of stakeholders’ views of water resource use and water quality policy. In Fuzzy Cognitive Maps; Springer: Berlin/Heidelberg, Germany, 2010; pp. 383–402. [Google Scholar]
- Vasslides, J.M.; Jensen, O.P. Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders. J. Environ. Manag. 2016, 166, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Solana-Gutiérrez, J.; Rincón, G.; Alonso, C.; García-de-Jalón, D. Using fuzzy cognitive maps for predicting river management responses: A case study of the Esla River basin, Spain. Ecol. Model. 2013, 360, 260–269. [Google Scholar] [CrossRef]
- Bosma, C.; Glenk, K.; Novo, P. How do individuals and groups perceive wetland functioning? Fuzzy cognitive mapping of wetland perceptions in Uganda. Land Use Policy 2017, 60, 181–196. [Google Scholar] [CrossRef]
- Wildenberg, M.; Bachhofer, M.; Adamescu, M.; De Blust, G.; Diaz-Delgadod, R.; Isak, K.G.Q.; Riku, V. Linking thoughts to flows-Fuzzy cognitive mapping as tool for integrated landscape modelling. In Proceedings of the 2010 International Conference on Integrative Landscape Modelling, Montpellier, France, 3–5 February 2010. [Google Scholar]
- Van der Sluis, T.; Arts, B.; Kok, K.; Bogers, M.; Busck, A.G.; Sepp, K.; Crouzat, E. Drivers of European landscape change: Stakeholders’ perspectives through Fuzzy Cognitive Mapping. Landsc. Res. 2018, 1–19. [Google Scholar] [CrossRef]
- Kok, K. The potential of Fuzzy Cognitive Maps for semi-quantitative scenario development, with an example from Brazil. Glob. Environ. Chang. 2009, 19, 122–133. [Google Scholar] [CrossRef]
- Vanwindekens, F.M.; Stilmant, D.; Baret, P.V. Development of a broadened cognitive mapping approach for analysing systems of practices in social–ecological systems. Ecol. Model. 2013, 250, 352–362. [Google Scholar] [CrossRef]
- Gray, S.; Chan, A.; Clark, D.; Jordan, R. Modeling the integration of stakeholder knowledge in social–ecological decision-making: Benefits and limitations to knowledge diversity. Ecol. Model. 2012, 229, 88–96. [Google Scholar] [CrossRef]
- Konti, A.; Damigos, D. Exploring strengths and weaknesses of bioethanol production from bio-waste in Greece using Fuzzy Cognitive Maps. Energy Policy 2018, 112, 4–11. [Google Scholar] [CrossRef]
- Misthos, L.M.; Messaris, G.; Damigos, D.; Menegaki, M. Exploring the perceived intrusion of mining into the landscape using the fuzzy cognitive mapping approach. Ecol. Eng. 2017, 101, 60–74. [Google Scholar] [CrossRef]
- Reckien, D. Weather extremes and street life in India—Implications of Fuzzy Cognitive Mapping as a new tool for semi-quantitative impact assessment and ranking of adaptation measures. Glob. Environ. Chang. 2014, 26, 1–13. [Google Scholar] [CrossRef]
- Olazabal, M.; Chiabai, A.; Foudi, S.; Neumann, M.B. Emergence of new knowledge for climate change adaptation. Environ. Sci. Policy 2018, 83, 46–53. [Google Scholar] [CrossRef]
- Ziv, G.; Watson, E.; Young, D.; Howard, D.C.; Larcom, S.T.; Tanentzap, A.J. The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach. Appl. Energy 2018, 210, 487–498. [Google Scholar] [CrossRef]
- Axelrod, R. Structure of Decision: The Cognitive Maps of Political Elites; Princeton University Press: Princeton, NJ, USA, 1976; ISBN 9780691616988. [Google Scholar]
- Papageorgiou, E.; Kontogianni, A. Using fuzzy cognitive mapping in environmental decision-making and management: A methodological primer and an application. In International Perspectives on Global Environmental Change; InTech: New York, NY, USA, 2012; ISBN 978-953-307-815-1. [Google Scholar]
- Özesmi, U.; Özesmi, S.L. Ecological models based on people’s knowledge: A multi-step fuzzy cognitive mapping approach. Ecol. Model. 2004, 176, 43–64. [Google Scholar] [CrossRef]
- Gray, S.A.; Zanre, E.; Gray, S.R.J. Fuzzy cognitive maps as representations of mental models and group beliefs. In Fuzzy Cognitive Maps for Applied Sciences and Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–48. [Google Scholar]
- Harary, F.; Norman, R.Z.; Cartwright, D. Structural Models: An Introduction to the Theory of Directed Graphs; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Junta de Andalucía. Informe Económico 2016; Consejería de Economía y Conocimiento, Junta de Andalucía: Seville, Spain, 2017; Available online: http://www.juntadeandalucia.es/export/drupaljda/publicacion/17/08/Informe_Economico_2016_0.pdf (accessed on 9March 2018). (In Spanish)
- MAPAMA. Encuesta de Superficies y Rendimientos de Cultivo; Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España: Madrid, Spain, 2015. Available online: http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/boletin2015_tcm30-122275.pdf (accessed on 12 February 2018). (In Spanish)
- European Parliament. Research for Agri-Comitee—Agriculture in Andalusia; Directorate General for Internal Policies: Brussels, Belgium, 2016; Available online: http://www.europarl.europa.eu/RegData/etudes/STUD/2016/573431/IPOL_STU(2016)573431_EN.pdf (accessed on 20 December 2017).
- MAPA. Plan Nacional de Regadíos Horizonte 2008; Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España: Madrid, Spain, 2001. Available online: http://www.mapama.gob.es/es/desarrollo-rural/temas/gestion-sostenible-regadios/plan-nacional-regadios/texto-completo/ (accessed on 12 February 2018). (In Spanish)
- Junta de Andalucía. Agenda del Regadío Andaluz H-2015; Consejería de Agricultura, Pesca y Alimentación, Junta de Andalucía: Seville, Spain, 2011; Available online: http://www.juntadeandalucia.es/export/drupaljda/AGENDA_DEL_REGADIO_CONSEJO_DE_GOBIERNO_x7-4-11x.pdf (accessed on 9 March 2018). (In Spanish)
- Fernández García, I.; Rodrigeuz Díaz, J.; Camacho Poyato, E.; Montesinos, P.; Berbel, J. Effects of modernization and medium term perspectives on water and energy use in irrigation districts. Agric. Syst. 2014, 131, 56–63. [Google Scholar] [CrossRef]
- Corominas, J. Agua y energía en el riego en la época de la sostenibilidad. Ing. Agua 2010, 17, 219–233. (In Spanish) [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.; Pérez-Urrestarazu, L.; Camacho-Poyato, E.; Montesinos, P. The paradox of irrigation scheme modernization: More efficient water use linked to higher energy demand. Span. J. Agric. Res. 2011, 9, 1000–1008. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.; Camacho-Poyato, E.; Blanco-Pérez, M. Evaluation of water and energy use in pressurized irrigation networks in Southern Spain. J. Irrig. Drain. Eng. 2011, 137, 644–650. [Google Scholar] [CrossRef]
- Noy, C. Sampling knowledge: The hermeneutics of snowball sampling in qualitative research. Int. J. Soc. Res. Methodol. 2008, 11, 327–344. [Google Scholar] [CrossRef]
- Bachofer, M.; Wildenberg, M. FCmapper Software. Available online: http://www.fcmappers.net/joomla/index.php (accessed on 10 January 2018).
Index | Individual Maps | Group Map |
---|---|---|
Number of maps | 11 | 1 |
Number of variables (N) | 14 ± 2.72 | 35 |
Number of connections (C) | 25 ± 9.40 | 209 |
C/N | 1.81 ± 0.59 | 5.97 |
Density | 0.03 ± 0.02 | 0.17 |
Number of transmitter variables (T) | 2.55 ± 2.21 | 2 |
Number of receiver variables (R) | 2.64 ± 2.01 | 1 |
Number of ordinary variables | 8.82 ± 2.93 | 32 |
Complexity (R/T) | 1.27 ± 1.57 | 0.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, P.; Blanco, M.; Castro-Campos, B. The Water–Energy–Food Nexus: A Fuzzy-Cognitive Mapping Approach to Support Nexus-Compliant Policies in Andalusia (Spain). Water 2018, 10, 664. https://doi.org/10.3390/w10050664
Martinez P, Blanco M, Castro-Campos B. The Water–Energy–Food Nexus: A Fuzzy-Cognitive Mapping Approach to Support Nexus-Compliant Policies in Andalusia (Spain). Water. 2018; 10(5):664. https://doi.org/10.3390/w10050664
Chicago/Turabian StyleMartinez, Pilar, Maria Blanco, and Bente Castro-Campos. 2018. "The Water–Energy–Food Nexus: A Fuzzy-Cognitive Mapping Approach to Support Nexus-Compliant Policies in Andalusia (Spain)" Water 10, no. 5: 664. https://doi.org/10.3390/w10050664
APA StyleMartinez, P., Blanco, M., & Castro-Campos, B. (2018). The Water–Energy–Food Nexus: A Fuzzy-Cognitive Mapping Approach to Support Nexus-Compliant Policies in Andalusia (Spain). Water, 10(5), 664. https://doi.org/10.3390/w10050664