Single Session of Chiseling Tillage for Soil and Vegetation Restoration in Severely Degraded Shrublands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Settings
2.2. The Study Design, Soil Sampling, and Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Above-Ground Processes
3.2. Below-Ground Processes
3.3. General Discussion and Implications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. Recorded Plant Species, by Year and Treatment.
Year | Treatment | Species | Year | Treatment | Species | Year | Treatment | Species |
2015 | Control | Aizoon hispanicum | 2016 | Control | Aaronsohnia factorovsky | 2017 | Control | Atractylis sp. |
Anabasis articulata | Aizoon hispanicum | Avena sp. | ||||||
Anthemis sp. | Andrachne telephioides | Erodium crassifolium | ||||||
Arnebia decumbens | Anthemis sp. | Gymnarrhena micrantha | ||||||
Artemisia sieberi Besser | Astragalus sp. | Haloxylon sp. | ||||||
Astragalus hamosus | Astragalus asterias Hohen | Malva aegyptia | ||||||
Astragalus tribuloides Delile | Astragalus hamosus | Neotorularia torulosa | ||||||
Atriplex halimus | Astragalus tribuloides Delile | Plantago crypsoides | ||||||
Bassia arabica | Atractylis phaeolepis Pomel | Plantago ovata | ||||||
Bassia indica | Avena wiestii | Reaumuria sp. | ||||||
Calendula arvensis | Calendula arvensis | Reichardia tingitana | ||||||
Carduus argentatus | Carduus argentatus | Schismus arabicus Nees | ||||||
Carrichtera annua | Centaurea sp. | Stipa capensis | ||||||
Centaurea ammocyanus | Centaurea ammocyanus | Trigonella stellata | ||||||
Erodium crassifolium | Erodium crassifolium | Shallow tillage | Aaronsohnia factorovsky | |||||
Erucaria rostrata | Erucaria microcarpa | Anthemis sp. | ||||||
Filago desertorum Pomel | Filago desertorum Pomel | Arnebia decumbens | ||||||
Gymnarrhena micrantha | Gymnarrhena micrantha | Astragalus sp. | ||||||
Haloxylon salicornicum | Hordeum glaucum | Avena sp. | ||||||
Haloxylon scoparium Pomel | Lappula spinocarpos | Buglossoides tenuiflora | ||||||
Lappula spinocarpos | Leontodon laciniatus | Centaurea sp. | ||||||
Leontodon laciniatus | Malva aegyptia | Eremopyrum bonaepartis | ||||||
Malva aegyptia | Malva parviflora | Erodium crassifolium | ||||||
Malva parviflora | Medicago laciniata | Filago desertorum Pomel | ||||||
Nasturtiopsis coronopifolia | Nasturtiopsis coronopifolia | Gymnarrhena micrantha | ||||||
Neotorularia torulosa | Plantago sp. | Haloxylon sp. | ||||||
Phalaris minor | Pteranthus dichotomus | Malva aegyptia | ||||||
Pteranthus dichotomus | Reaumuria hirtella | Malva parviflora | ||||||
Reaumuria hirtella | Reichardia tingitana | Neotorularia torulosa | ||||||
Reichardia tingitana | Schismus arabicus Nees | Plantago crypsoides | ||||||
Roemeria hybrida | Scorzonera papposa | Plantago ovata | ||||||
Salsola inermis | Senecio glaucus | Pteranthus dichotomus | ||||||
Schismus arabicus Nees | Silene vivianii | Reaumuria sp. | ||||||
Scorzonera papposa | Stipa capensis | Reichardia tingitana | ||||||
Silene decipiens | Trigonella stellata | Salsola inermis | ||||||
Spergula fallax | Shallow tillage | Aaronsohnia factorovsky | Schismus arabicus Nees | |||||
Spergularia diandra | Anthemis sp. | Senecio glaucus | ||||||
Stipa capensis | Arnebia decumbens | Silene decipiens | ||||||
Trigonella stellata | Astragalus sp. | Stipa capensis | ||||||
Vulpia myuros | Astragalus asterias Hohen | Stipagrostis plumosa | ||||||
Shallow tillage | Allium rothii | Astragalus hamosus | Trigonella stellata | |||||
Anthemis sp. | Astragalus tribuloides Delile | Deep tillage | Aaronsohnia factorovsky | |||||
Arnebia decumbens | Avena wiestii | Anthemis sp. | ||||||
Astragalus hamosus | Calendula arvensis | Avena sp. | ||||||
Astragalus tribuloides Delile | Carduus argentatus | Erodium crassifolium | ||||||
Atriplex halimus | Erodium crassifolium | Gymnocarpos decander | ||||||
Avena wiestii | Erucaria microcarpa | Haloxylon sp. | ||||||
Bassia arabica | Gymnarrhena micrantha | Lappula spinocarpos | ||||||
Bassia indica | Hordeum glaucum | Malva aegyptia | ||||||
Calendula arvensis | Leontodon laciniatus | Nasturtiopsis coronopifolia | ||||||
Centaurea ammocyanus | Malva aegyptia | Neotorularia torulosa | ||||||
Erodium crassifolium | Malva parviflora | Plantago crypsoides | ||||||
Erucaria rostrata | Nasturtiopsis coronopifolia | Pteranthus dichotomus | ||||||
Filago desertorum Pomel | Pteranthus dichotomus | Reaumuria sp. | ||||||
Gymnarrhena micrantha | Reaumuria hirtella | Salsola inermis | ||||||
Lappula spinocarpos | Reichardia tingitana | Schismus arabicus Nees | ||||||
Leontodon laciniatus | Salsola inermis | Scorzonera papposa | ||||||
Malva aegyptia | Salsola inermis | Silene decipiens | ||||||
Malva parviflora | Schismus arabicus Nees | Stipa capensis | ||||||
Nasturtiopsis coronopifolia | Scorzonera papposa | Thymelaea hirsuta | ||||||
Neotorularia torulosa | Senecio glaucus | Trigonella stellata | ||||||
Pteranthus dichotomus | Silene vivianii | |||||||
Reaumuria hirtella | Sonchus oleraceus | |||||||
Reichardia tingitana | Stipa capensis | |||||||
Roemeria hybrida | Trigonella stellata | |||||||
Salsola inermis | Tulipa systola Stapf | |||||||
Salsola vermiculata | Deep tillage | Aaronsohnia factorovsky | ||||||
Schismus arabicus Nees | Aizoon hispanicum | |||||||
Scorzonera papposa | Andrachne telephioides | |||||||
Silene colorata | Anthemis sp. | |||||||
Spergula fallax | Atriplex leucoclada | |||||||
Stipa capensis | Avena wiestii | |||||||
Trigonella stellata | Calendula arvensis | |||||||
Deep tillage | Aegilops kotschyi | Carduus argentatus | ||||||
Aizoon hispanicum | Centaurea ammocyanus | |||||||
Anthemis sp. | Erodium crassifolium | |||||||
Arnebia decumbens | Erucaria microcarpa | |||||||
Astragalus asterias Hohen | Filago desertorum Pomel | |||||||
Astragalus hamosus | Gymnarrhena micrantha | |||||||
Astragalus tribuloides Delile | Hordeum glaucum | |||||||
Avena wiestii | Launaea sp. | |||||||
Bassia arabica | Leontodon laciniatus | |||||||
Calendula arvensis | Malva aegyptia | |||||||
Carduus argentatus | Malva parviflora | |||||||
Centaurea ammocyanus | Medicago laciniata | |||||||
Eremopyrum bonaepartis | Nasturtiopsis coronopifolia | |||||||
Erodium crassifolium | Pteranthus dichotomus | |||||||
Erucaria rostrata | Reaumuria hirtella | |||||||
Filago desertorum Pomel | Reichardia tingitana | |||||||
Filago pyramidata | Salsola inermis | |||||||
Gymnarrhena micrantha | Schismus arabicus Nees | |||||||
Hordeum glaucum | Scorzonera papposa | |||||||
Ifloga spicata | Senecio glaucus | |||||||
Lappula spinocarpos | Sonchus oleraceus | |||||||
Leontodon laciniatus | Spergula fallax | |||||||
Malva aegyptia | Stipa capensis | |||||||
Malva parviflora | Trigonella arabica Delile | |||||||
Nasturtiopsis coronopifolia | Trigonella stellata | |||||||
Neotorularia torulosa | ||||||||
Pteranthus dichotomus | ||||||||
Reaumuria hirtella | ||||||||
Reichardia tingitana | ||||||||
Roemeria hybrida | ||||||||
Salsola inermis | ||||||||
Salsola tragus | ||||||||
Schismus arabicus Nees | ||||||||
Scorzonera papposa | ||||||||
Silene colorata | ||||||||
Silene decipiens | ||||||||
Sonchus oleraceus | ||||||||
Spergula fallax | ||||||||
Spergularia diandra | ||||||||
Stipa capensis | ||||||||
Trigonella stellata | ||||||||
References
- Lei, S.A. Soil compaction from human trampling, biking, and off-road motor vehicle activity in a blackbrush (Coleogyne ramosissima) shrubland. West. N. Am. Nat. 2004, 64, 125–130. [Google Scholar]
- Alaoui, A.; Lipiec, J.; Gerke, H.H. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Tillage Res. 2011, 115–116, 1–15. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291. [Google Scholar] [CrossRef]
- Soil Compaction in England and Wales. Scoping Study to Assess Soil Compaction Affecting Upland and Lowland Grassland in England and Wales. Appendix 2: The Causes of Soil Compaction; Soil Compaction: London, UK, 2008. [Google Scholar]
- Zahawi, R.A.; Reid, J.L.; Holl, K.D. Hidden costs of passive restoration. Restor. Ecol. 2014, 22, 284–287. [Google Scholar] [CrossRef]
- Roa-Fuentes, L.L.; Martínez-Garza, C.; Etchevers, J.; Campo, J. Recovery of soil C and N in a tropical pasture: Passive and active restoration. Land Degrad. Dev. 2015, 26, 201–210. [Google Scholar] [CrossRef]
- Czerwiński, M.; Kobierski, M.; Golińska, B.; Goliński, P. Applicability of full inversion tillage to semi-natural grassland restoration on ex-arable land. Arch. Agron. Soil Sci. 2015, 61, 785–795. [Google Scholar] [CrossRef]
- Cortez, J.W.; Mauad, M.; de Souza, L.C.F.; Rufino, M.V.; de Souza, P.H.N. Agronomic attributes of soybeans and soil resistance to penetration in no-tillage and chiseled surfaces. Eng. Agric. Jaboticabal 2017, 37, 98–105. [Google Scholar]
- Chatterjee, A. On-farm comparisons of soil organic carbon under no-tillage and chisel-plow systems. Acta Agric. Scand. B Soil Plant Sci. 2018, 68, 471–476. [Google Scholar] [CrossRef]
- Bitan, A.; Rubin, S. Climatic Atlas of Israel for Physical and Environmental Planning and Design, 3rd ed.; Ramot Press: Tel Aviv, Israel, 1991. [Google Scholar]
- Israel Meteorological Service Website. Available online: http://www.ims.gov.il/ims/all_tahazit/ (accessed on 8 June 2018).
- Avni, Y.; Weiler, N. Geological Map of Israel 1:50,000, Sde Boqer Sheet 18–IV; Geological Survey of Israel: Jerusalem, Israel, 2013.
- Singer, A. The Soils of Israel; Springer Verlag: Berlin, Germany, 2007; p. 306. [Google Scholar]
- Drori, B.; Hyams, E.; Siegal, Z.; Tsoar, A. Summary of First Year of the Sde Zin Restoration Study: Soil Plowing for Increasing the Diversity and Abundance of Native Vegetation; Unpublished Report; Israel Nature and Parks Authority: Jerusalem, Israel, 2015. (In Hebrew) [Google Scholar]
- Tsoar, A.; Drori, B.; Shafir, A.; Hyams, E.; Siegal, Z.; Tzluk, M. Sde Zin Conservation. In Proceedings of the Conference on Organisms as Ecological Engineers, Sde Boqer, Israel, 10 May 2017. (In Hebrew). [Google Scholar]
- Saleh, A. Soil roughness measurement: Chain method. J. Soil Water Conserv. 1993, 48, 527–529. [Google Scholar]
- Vanags, C.; Minasny, B.; McBratney, A.B. The Dynamic Penetrometer for Assessment of Soil Mechanical Resistance. In Proceedings of the SuperSoil 2004: 3rd Australian New Zealand Soils Conference, Sydney, Australia, 5–9 December 2004. [Google Scholar]
- Grossman, R.B.; Reinsch, T.G. Bulk density and linear extensibility. In Methods of Soil Analysis, Part 4, Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 201–225. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Gardner, W.G. Water content. In Methods of Soil Analysis, No. 9. American Society of Agronomy; Black, C.A., Ed.; Soil Science Society of America: Madison, WI, USA, 1965; pp. 82–127. [Google Scholar]
- Loeppert, R.H.; Suarez, D.L. Carbonate and gypsum. In Methods of Soil Analysis, Part 3, Chemical Methods, Ch. 15; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnson, C.T., Sumner, M.E., Eds.; SSSA Special Pub.: Madison, WI, USA, 1996; Volume 5, pp. 437–474. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2. 9; Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnson, C.T., Sumner, M.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Harris, D.; Horwáth, W.R.; van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Sci. Soc. Am. J. 2000, 65, 1853–1856. [Google Scholar] [CrossRef]
- Bachar, A.; Al-Ashhab, A.; Soares, M.I.M.; Sklarz, M.Y.; Angel, R.; Ungar, E.D.; Gillor, O. Soil microbial abundance and diversity along a low precipitation gradient. Microb. Ecol. 2010, 60, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package Version 3.1-137. 2018. Available online: https://cran.r-project.org/web/packages/nlme/citation.html (accessed on 8 June 2018).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 8 June 2018).
- Bramorski, J.; De Maria, I.C.; E Silva, R.L.; Crestana, S. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol. Rev. Bras. Ciênc. Solo 2012, 36, 1291–1297. [Google Scholar] [CrossRef]
- Yizhaq, H.; Stavi, I.; Shachak, M.; Bel, G. Geodiversity increases ecosystem durability to prolonged droughts. Ecol. Complex 2017, 31, 96–103. [Google Scholar] [CrossRef]
- Brazier, V. Treading carefully among periglacial landforms. Earth Herit. 2017, 47, 42–44. [Google Scholar]
- Hjort, J.; Gordon, J.E.; Gray, M.; Hunter, M.L., Jr. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 2015, 29, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Shao, M.A.; Omran, W.; Amer, A.M.M. Effects of erosion and deposition on particle size distribution of deposited farmland soils on the Chinese Loess Plateau. Rev. Bras. Ciênc. Solo 2011, 35, 2135–2144. [Google Scholar] [CrossRef]
- Thompson, S.E.; Assouline, S.; Chen, L.; Trahktenbrot, A.; Svoray, T.; Katul, G.G. Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development. Mov. Ecol. 2014, 2, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginman, E.L. Dispersal Biology of Orbanche ramosa in South Australia. Master’s Thesis, the School of Earth and Environmental Science, The University of Adelaide, Adelaide, Australia, 2009. [Google Scholar]
- Celik, I. Effects of tillage on penetration resistance, bulk density and saturated hydraulic conductivity in a clayey soil conditions. Tarim Bilimleri Derg. J. Agric. Sci. 2011, 17, 143–156. [Google Scholar]
- Celik, I.; Gunal, H.; Acar, M.; Gok, M.; Barut, Z.B.; Pamiralan, H. Long-term tillage and residue management effect on soil compaction and nitrate leaching in a Typic Haploxerert soil. Int. J. Plant Prod. 2017, 11, 131–149. [Google Scholar]
- Birkas, M.; Dexter, A.; Szemok, A. Tillage-indiced soil compaction, as a climate threat increasing stressor. Cereal Res. Commun. 2009, 37, 379–382. [Google Scholar]
- Indoria, A.K.; Rao, C.S.; Sharma, K.L.; Reddy, K.S. Conservation agriculture—A panacea to improve soil physical health. Curr. Sci. 2017, 112, 52–61. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Chamen, W.C.T.; Moxey, A.P.; Towers, W.; Balana, B.; Hallett, P.D. Mitigating arable soil compaction: A review and analysis of available cost and benefit data. Soil Tillage Res. 2015, 146, 10–25. [Google Scholar] [CrossRef]
- Danielson, R.E.; Sutherland, P.L. Porosity. In Methods of Soil Analysis. Part 1. No. 9. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 443–461. [Google Scholar]
- Zhang, S.L.; Grip, H.; Lovdahl, L. Effect of soil compaction on hydraulic properties of two loess soils in China. Soil Tillage Res. 2006, 90, 117–125. [Google Scholar] [CrossRef]
- Stavi, I.; Shem-Tov, R.; Chocron, M.; Yizhaq, H. Geodiversity, self-organization, and health of three-phase semi-arid rangeland ecosystems, in the Israeli Negev. Geomorphology 2015, 234, 11–18. [Google Scholar] [CrossRef]
- Lemtiri, A.; Degrune, F.; Barbieux, S.; Hiel, M.P.; Chelin, M.; Parvin, N.; Vandenbol, M.; Francis, F.; Colinet, G. Crop residue management in arable cropping systems under temperate climate. Part 1: Soil biological and chemical (phosphorus and nitrogen) properties. A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 236–244. [Google Scholar]
- Herrada, M.R.; Fernandez, R.R.G.; Leandro, W.M.; Ferreira, E.P.D.; Ferraresi, T.M.; Perez, J.J.R. Evaluation of biological attributes of soil type latossol under agroecological production. Centro Agric. 2016, 43, 14–20. [Google Scholar]
- Ma, Z.M.; Chen, J.; Lyu, X.D.; Liu, L.L.; Siddique, K.H.M. Distribution of soil carbon and grain yield of spring wheat under a permanent raised bed planting system in an arid area of northwest China. Soil Tillage Res. 2016, 163, 274–281. [Google Scholar] [CrossRef]
- Raiesi, F.; Kabiri, V. Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecol. Indic. 2016, 71, 198–207. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Bashan, Y.; Vazquez, P. Effect of calcium carbonate, sand, and organic matter levels on mortality of five species of Azospirillum in natural and artificial bulk soils. Biol. Fertil. Soils 2000, 30, 450–459. [Google Scholar] [CrossRef]
- Bhargavarami Reddy, C.H.; Guldekar, V.D.; Balakrishnan, N. Influence of soil calcium carbonate on yield and quality of Nagpur mandarin. Afr. J. Agric. Res. 2013, 8, 5193–5196. [Google Scholar]
- Xiao, X.; Horton, R.; Sauer, T.J.; Heitman, J.; Ren, T. Cumulative soil water evaporation as a function of depth and time. Vadose Zone J. 2011, 10, 1016–1022. [Google Scholar] [CrossRef]
- Merrill, S.D.; Huang, C.; Zobeck, T.M.; Tanaka, D.L. Use of the chain set for scale-sensitive and erosion-relevant measurement of soil surface roughness. In Proceedings of the 10th International Soil Conservation Organization Meeting Sustaining the Global Farm, West Lafayette, IN, USA, 24–29 May 1999; Stott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; Purdue University: West Lafayette, IN, USA, 2001; pp. 594–600. Available online: http://topsoil.nserl.purdue.edu/nserlweb-old/isco99/pdf/ISCOdisc/SustainingTheGlobalFarm/P064-Merrill.pdf (accessed on 8 June 2018).
- Vermang, J.; Norton, L.D.; Huang, C.; Cornelis, W.M.; da Silva, A.M.; Gabriels, D. Characterization of soil surface roughness effects on runoff and soil erosion rates under simulated rainfall. Soil Sci. Soc. Am. J. 2015, 79, 903–916. [Google Scholar] [CrossRef]
- Tongway, D.J.; Ludwig, J.A. The conservation of water and nutrients within landcapes. In Landscape Ecology Function and Management; Ludwig, J.A., Tongway, D.J., Freudenberger, D., Noble, J., Hodgkinson, K., Eds.; CSIRO Publishing: Canbbera, Australia, 2003; pp. 13–22. [Google Scholar]
- Scopel, E.; da Silva, F.A.M.; Corbeels, M.; Affholder, F.; Maraux, F. Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 2004, 24, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.R. Influence of tillage on soil aeration. Agron. Crop Sci. 1996, 177, 253–259. [Google Scholar] [CrossRef]
- Campanella, M.V.; Rostagno, C.M.; Videla, L.S.; Bisigato, A.J. Land degradation affects shrub growth responses to precipitation in a semiarid rangeland of north-eastern Patagonia (Argentina). Aust. Ecol. 2018, 43, 280–287. [Google Scholar] [CrossRef]
- Zwikel, S. Spatial Patterns of Soil Properties which Affect Water Regime (Rainfall Overland Flow Relationships) in Eco-Geomorphic Systems along a Climatic Transect, from the Negev Highlands to the Galilee Mountains. Ph.D. Thesis, Bar-Ilan University, Ramat Gan, Israel, 2004. (In Hebrew with English Abstract). [Google Scholar]
- Prakash, O.; Sharma, R.; Rahi, P.; Karthikeyan, N. Role of microorganisms in plant nutrition and health. In Nutrient Use Efficiency: From Basics to Advances; Rakshit, A., Singh, A., Bahadur, H., Avijit, S., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 125–161. [Google Scholar]
- Field, J.P.; Breshears, D.D.; Whicker, J.J.; Zou, C.B. Sediment capture by vegetation patches: Implications for desertification and increased resource redistribution. J. Geophys. Res. Biogeosci. 2012, 117, G01033. [Google Scholar] [CrossRef]
- Whisenant, S. 50 First steps in erosion control. In Forest Restoration in Landscapes: Beyond Planting Trees; Mansourian, S., Vallauri, D., Dudley, N., Eds.; Springer: New York, NY, USA, 2005; pp. 350–355. [Google Scholar]
- Todd, S.D. Solar Energy Facility, Re-Vegetation and Rehabilitation Plan, Appendix C; Solar Direct: Sarasota, FL, USA, 2013; Available online: https://www.erm.com/contentassets/ef51f6123d3d436bb2e3c5207b971595/sub-appendices/appendix-c.pdf (accessed on 8 June 2018).
- Xiao, W.F.; Ge, X.G.; Zeng, L.X.; Huang, Z.L.; Lei, J.P.; Zhou, B.Z.; Li, M.H. Rates of litter decomposition and soil respiration in relation to soil temperature and water in different aged Pinus massoniana forests in the Three Gorges Reservoir area, China. PLoS ONE 2014, 9, e101890. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Yao, X.L.; Zhou, J. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 2883–2892. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Farrell, M.; Butler, G.; Bolan, N. Assessing the effect of crop residue removal on soil organic carbon storage and microbial activity in a no-till cropping system. Soil Use Manag. 2015, 31, 450–460. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Chyba, J.; Kroulík, M.; Krištof, K.; Misiewicz, P.A.; Chaney, K. Influence of soil compaction by farm machinery and livestock on water infiltration rate on grassland. Agron. Res. 2014, 12, 59–64. [Google Scholar]
- Adekalu, K.O.; Okunade, D.A.; Osunbitan, J.A. Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agricultural soils. Geoderma 2006, 137, 226–230. [Google Scholar] [CrossRef]
- Holl, K.D.; Aide, T.M. When and where to actively restore ecosystems? For. Ecol. Manag. 2011, 261, 1558–1563. [Google Scholar] [CrossRef]
- Yannelli, F.A.; Tabeni, S.; Mastrantonio, L.E.; Vezzani, N. Assessing degradation of abandoned farmlands for conservation of the Monte Desert Biome in Argentina. Environ. Manag. 2014, 53, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Yirdaw, E.; Tigabu, M.; Monge, A. Rehabilitation of degraded dryland ecosystems—Review. Silva Fenn. 2017, 51, 1673. [Google Scholar] [CrossRef]
P Value | Deep Chiseling | Shallow Chiseling | Control | |
---|---|---|---|---|
Surface roughness | <0.0001 | 6.1 a (0.5) | 4.6 b (0.5) | 0.5 c (0.3) |
Penetration resistance | 0.0007 | 0.38 b (0.06) | 0.39 b (0.07) | 1.62 a (0.19) |
ρb | 0.0009 | 1.31 b (0.02) | 1.36 b (0.02) | 1.55 a (0.03) |
St | 0.0009 | 50.6 a (0.6) | 48.8 a (0.9) | 41.1 b (0.9) |
Өg | 0.6593 | 5.8 a (0.6) | 5.3 a (0.5) | 3.3 a (0.2) |
AWC | 0.5095 | 7.2 a (0.5) | 6.7 a (0.4) | 5.3 b (0.3) |
SOC | 0.0498 | 22.6 ab (1.4) | 19.7 b (1.2) | 24.2 a (1.5) |
Bacterial relative abundance | <0.0001 | 6.03 × 107 a (1.24 × 107) | 3.6 × 107 b (7.03 × 106) | 1.73 × 107 c (3.08 × 106) |
SOC stratification ratio | 0.3871 | 1.01 a (0.08) | 0.82 a (0.04) | 0.93 a (0.09) |
CaCO3 | 0.2322 | 27.5 a (0.4) | 26.8 a (0.5) | 26.3 a (0.5) |
P Value | 0–5 cm | 15–20 cm | |
---|---|---|---|
Penetration resistance | 0.002 | 0.71 b (0.12) | 0.89 a (0.16) |
ρb | 0.2697 | 1.39 a (0.02) | 1.41 a (0.03) |
St | 0.2697 | 47.3 a (0.9) | 46.6 a (1.1) |
Өg | 0.1587 | 3.1 a (0.1) | 6.5 a (0.5) |
AWC | 0.3407 | 5.7 a (0.2) | 7.0 a (0.5) |
SOC | 0.3603 | 21.1 a (1.2) | 23.3 a (1.0) |
Bacterial relative abundance | 0.0047 | 6.58 × 107 a (7.43 × 106) | 9.75 × 106 b (8.64 × 105) |
CaCO3 | 0.5121 | 27.1 a (0.4) | 26.6 a (0.3) |
P Value | Deep Chiseling × 0–5 cm | Deep Chiseling × 15–20 cm | Shallow Chiseling × 0–5 cm | Shallow Chiseling × 15–20 cm | Control × 0–5 cm | Control × 15–20 cm | |
---|---|---|---|---|---|---|---|
Өg | <0.0001 | 3.1 b (0.1) | 8.5 a (0.6) | 3.3 b (0.2) | 7.2 a (0.6) | 2.9 b (0.2) | 3.6 b (0.3) |
AWC | 0.0056 | 6.2 ab (0.4) | 8.3 a (0.8) | 5.5 b (0.4) | 7.9 a (0.6) | 5.7 b (0.3) | 4.9 b (0.6) |
Bacterial relative abundance | 0.0016 | 1.07 × 108 a (9.94 × 106) | 1.34 × 107 c (1.42 × 106) | 6.25 × 107 b (5.27 × 106) | 8.84 × 106 c (1.53 × 106) | 2.76 × 107 c (3.67 × 106) | 6.97 × 106 c (3.90 × 105) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavi, I.; Siegal, Z.; Drori, B.; Hyams, E.; Shafir, A.; Kamiski, Y.; Al-Ashhab, A.; Dorman, M.; Tsoar, A. Single Session of Chiseling Tillage for Soil and Vegetation Restoration in Severely Degraded Shrublands. Water 2018, 10, 755. https://doi.org/10.3390/w10060755
Stavi I, Siegal Z, Drori B, Hyams E, Shafir A, Kamiski Y, Al-Ashhab A, Dorman M, Tsoar A. Single Session of Chiseling Tillage for Soil and Vegetation Restoration in Severely Degraded Shrublands. Water. 2018; 10(6):755. https://doi.org/10.3390/w10060755
Chicago/Turabian StyleStavi, Ilan, Zehava Siegal, Ben Drori, Eran Hyams, Amir Shafir, Yevgeni Kamiski, Ashraf Al-Ashhab, Michael Dorman, and Asaf Tsoar. 2018. "Single Session of Chiseling Tillage for Soil and Vegetation Restoration in Severely Degraded Shrublands" Water 10, no. 6: 755. https://doi.org/10.3390/w10060755