Surface Water Dynamics in the North America Arctic Based on 2000–2016 Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.3. High-Performance Computing Resources
2.4. Indices
2.5. Terrain Mask
2.6. Glacier Mask
2.7. Ocean Mask
2.8. Classification
2.9. Validation
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riordan, B.; Verbyla, D.; McGuire, A.D. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Smith, A.R. Color gamut transform pairs. ACM Siggraph Comput. Graph. 1978, 12, 12–19. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M.; Hinzman, L.D. Disappearing Arctic lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Walter, K.M.; Anthony, V.E. Romanovsky Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Carroll, M.L.; Loboda, T.V. Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sens. 2017, 9, 497. [Google Scholar] [CrossRef]
- MacDonald, G.M. Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA 2010, 107, 21256–21262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.M. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens. 2017, 9, 640. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Carroll, M.; Wooten, M.; DiMiceli, C.; Sohlberg, R.; Kelly, M. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991–2011. Remote Sens. 2016, 8, 622. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Paltan, H.; Dash, J.; Edwards, M. A refined mapping of Arctic lakes using Landsat imagery. Int. J. Remote Sens. 2015, 36, 5970–5982. [Google Scholar] [CrossRef] [Green Version]
- Eros Science Processing Architecture. Available online: https://espa.cr.usgs.gov/ (accessed on 24 July 2016).
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); USGS Report 2011-1073; US Geological Survey: Reston, VA, USA, 2011. Available online: https://pubs.er.usgs.gov/publication/ofr20111073 (accessed on 20 July 2016).
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C.; et al. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 5.0; Global Land Ice Measurements from Space; Digital Media: Boulder, CO, USA, 2015; Available online: http://www.glims.org/RGI/ (accessed on 20 July 2016).
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, M.T.; Romanovsky, V.; Harden, J.; Shur, Y.; O’Donnell, J.; Schuur, E.A.G.; Kanevskiy, M.; Marchenko, S. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 2010, 40, 1219–1236. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Jaramillo, F.; Destouni, G. Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J. Hydrol. 2015, 529, 134–145. [Google Scholar] [CrossRef]
- Brock, B.W. Shrinking sea ice, increasing snowfall and thinning lake ice: A complex Arctic linkage explained. Environ. Res. Lett. 2016, 11, 091004. [Google Scholar] [CrossRef]
- Koch, J.C. Lateral and subsurface flows impact Arctic coastal plain lake water budgets. Hydrol. Process. 2016, 30, 3918–3931. [Google Scholar] [CrossRef]
- Carroll, M.L.; Townshend, J.R.G.; DiMiceli, C.M.; Loboda, T.; Sohlberg, R.A. Shrinking lakes of the Arctic: Spatial relationships and trajectory of change. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, S.M.; Voss, C.I.; Walvoord, M.A.; Minsley, B.J.; Rover, J. Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA. Geophys. Res. Lett. 2013, 40, 882–887. [Google Scholar] [CrossRef] [Green Version]
- Roach, J.; Griffith, B.; Verbyla, D.; Jones, J.B. Mechanisms influencing changes in lake area in Alaskan boreal forest. Glob. Chang. Biol. 2011, 17, 2567–2583. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 2012, 464, 459–466. [Google Scholar] [CrossRef]
- Van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat. Clim. Chang. 2011, 1, 119–123. [Google Scholar] [CrossRef]
- Šmejkalová, T.; Edwards, M.E.; Dash, J. Arctic lakes show strong decadal trend in earlier spring ice-out. Sci. Rep. 2016, 6, 38449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.; Ferrians, J.O., Jr.; Heginbottom, J.A.; Melnikov, E.S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions; Version 2; National Snow and Ice Data Center: Boulder, CO, USA, 2002.
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2: MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid; NASA EOSDIS Land Processes DAAC; USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA. Available online: https://lpdaac.usgs.gov (accessed on 16 June 2016).
- Wan, Z.; Hook, S. MYD11A2: MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid; V006. NASA EOSDIS Land Processes DAAC; USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA. Available online: https://lpdaac.usgs.gov (accessed on 17 July 2014).
Map | Reference | User’s Accuracy | |||
---|---|---|---|---|---|
Water | Land | Total | |||
Landsat5 | Water | 90 | 1 | 91 | 98.90% |
Land | 17 | 364 | 381 | 95.54% | |
Total | 107 | 365 | 472 | ||
Producer’s Accuracy | 84.1% | 99.7% | Total Accuracy: 96.19% | ||
Landsat7 | Water | 88 | 2 | 90 | 97.8% |
Land | 21 | 361 | 382 | 94.5% | |
Total | 109 | 363 | 472 | ||
Producer’s Accuracy | 80.7% | 99.4% | Total Accuracy: 95.1% | ||
Landsat8 | Water | 97 | 1 | 98 | 99.0% |
Land | 15 | 359 | 374 | 96.0% | |
Total | 112 | 360 | 472 | ||
Producer’s Accuracy | 86.6% | 99.7% | Total Accuracy: 96.6% |
Correlations | Gain | Loss | Budget |
---|---|---|---|
Spearman Correlations | 0.35 | 0.62 | −0.55 |
Kendall Correlations | 0.25 | 0.49 | −0.42 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, Y.; Fu, D.; Wang, X.; Su, F. Surface Water Dynamics in the North America Arctic Based on 2000–2016 Landsat Data. Water 2018, 10, 824. https://doi.org/10.3390/w10070824
Sui Y, Fu D, Wang X, Su F. Surface Water Dynamics in the North America Arctic Based on 2000–2016 Landsat Data. Water. 2018; 10(7):824. https://doi.org/10.3390/w10070824
Chicago/Turabian StyleSui, Yijie, Dongjie Fu, Xuefeng Wang, and Fenzhen Su. 2018. "Surface Water Dynamics in the North America Arctic Based on 2000–2016 Landsat Data" Water 10, no. 7: 824. https://doi.org/10.3390/w10070824
APA StyleSui, Y., Fu, D., Wang, X., & Su, F. (2018). Surface Water Dynamics in the North America Arctic Based on 2000–2016 Landsat Data. Water, 10(7), 824. https://doi.org/10.3390/w10070824