Changes and Driving Forces of the Water-Sediment Relationship in the Middle Reaches of the Hanjiang River
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Trend Analysis and Breakpoint Detection
3.2. Sediment Load Reduction Factors Analysis
3.3. Double-Mass Curve Method
4. Results and Discussion
4.1. Trends in Water, Sediment Load, and Vegetation Coverage
4.2. Variability of the Water-Sediment Relationship
4.3. Driving Forces
4.4. Contributions of Anthropogenic Activities and Climate Variability
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murgulet, D.; Murgulet, V.; Spalt, N.; Douglas, A.; Hay, R.G. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas. Sci. Total Environ. 2016, 572, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Yang, Y.; Long, D.; Feng, M. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Samaras, A.G.; Koutitas, C.G. An integrated approach to quantify the impact of watershed management on coastal morphology. Ocean Coast. Manag. 2012, 69, 68–77. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Choi, C.; Hwang, C. Forecasting the Potential Effects of Climatic and Land-Use Changes on Shoreline Variation in Relation to Watershed Sediment Supply and Transport. J. Coast. Res. 2016, 33. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Shi, P.J.; Jia, Z.W. Slope length effects on soil loss for steep slopes. Soil Sci. Soc. Am. J. 1994, 64, 1759–1763. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: importance and research needs. CATENA 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Pesce, M.; Critto, A.; Torresan, S.; Giubilato, E.; Santini, M.; Zirino, A.; Ouyang, W.; Marcomini, A. Modelling climate change impacts on nutrients and primary production in coastal waters. Sci. Total Environ. 2018, 628, 919–937. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Hoitink, A.J.F.; Sassi, M.G.; Zheng, J.; Chen, X.; Zhang, C. Morphological change in the Pearl River Delta. China Mar. Geol. 2015, 363, 202–219. [Google Scholar] [CrossRef]
- Samaras, A.G.; Koutitas, C.G. The impact of watershed management on coastal morphology: A case study using an integrated approach and numerical modeling. Geomorphology 2014, 211, 52–63. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.M.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth. Syst. Sci. 2010, 7, 347–350. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Wang, G.; Fu, G.; He, R.; Yan, X.; Jin, J.; Liu, Y.; Zhang, A. Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities. J. Hydrol. 2012, 460–461, 117–129. [Google Scholar] [CrossRef]
- Yang, S.L.; Zhao, Q.Y.; Belkin, I.M. Temporal variation in the sediment load of the Yangtze river and the influences of human activities. J. Hydrol. 2002, 263, 56–71. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Y.; Fu, R.; Dou, X.; Zhang, E. Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period: A discussion. Quat. Int. 2008, 186, 55–64. [Google Scholar] [CrossRef]
- Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Chang. 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Turner, B.L. The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years; CUP Archive; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Stanley, D.J.; Warne, A.G. Nile Delta in Its Destruction Phase. J. Coastal. Res. 1998, 14, 795–825. [Google Scholar]
- Syvitski, J.P.M.; Kettner, A.J. On the flux of water and sediment into the Northern Adriatic Sea. Cont. Shelf. Res. 2007, 27, 296–308. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Chang. 2007, 57, 261–282. [Google Scholar] [CrossRef]
- Wang, H.; Saito, Y.; Zhang, Y.; Bi, N.; Sun, X.; Yang, Z. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Sci. Rev. 2011, 108, 80–100. [Google Scholar] [CrossRef]
- Dai, Z.; Fagherazzi, S.; Mei, X.; Gao, J. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013. Geomorphology 2016, 268, 123–132. [Google Scholar] [CrossRef]
- Li, Q.; Yu, M.; Lu, G.; Cai, T.; Bai, X.; Xia, Z. Impacts of the Gezhouba and Three Gorges reservoirs on the sediment regime in the Yangtze River, China. J. Hydrol. 2011, 403, 224–233. [Google Scholar] [CrossRef]
- Luo, X.X.; Yang, S.L.; Zhang, J. The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the middle and lower Yangtze River (Changjiang) and its estuary, and subsequent sediment dispersal in the East China Sea. Geomorphology 2012, 179, 126–140. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Li, G.; Jiang, W. Wave Climate Modeling on the Abandoned Huanghe (Yellow River) Delta Lobe and Related Deltaic Erosion. J. Coast. Res. 2006, 22, 906–918. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X.; Wang, Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Glob. Planet. Chang. 2007, 57, 331–354. [Google Scholar] [CrossRef]
- Xu, K.; Milliman, J.D.; Yang, Z.; Wang, H. Yangtze sediment decline partly from Three Gorges Dam. Eos Trans. Am. Geophys. Union 2013, 87, 185–190. [Google Scholar] [CrossRef]
- Dai, S.B.; Yang, S.L.; Li, M. The sharp decrease in suspended sediment supply from China’s rivers to the sea: Anthropogenic and natural causes. Int. Assoc. Sci. Hydrol. Bull. 2009, 54, 135–146. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Wu, J. Assessing the impact of Danjiangkou reservoir on ecohydrological conditions in Hanjiang river, China. Ecol. Eng. 2015, 81, 41–52. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zhao, Y.; Peng, H.; Shi, Y. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River. J. Hydrol. 2016, 541, 1348–1362. [Google Scholar] [CrossRef]
- Chen, H.C.; Du, P. Potential ecological benefits of the middle route for the south-north water diversion project. Tsinghua Sci. Technol. 2008, 13, 715–719. [Google Scholar] [CrossRef]
- He, W.; He, Q.; Zhou, J. Soil weathering-water environment-ecological risks in Hanjiang River Basin, China. Quat. Int. 2015, 380–381, 297–304. [Google Scholar] [CrossRef]
- Xin, X.K.; Li, K.F.; Finlayson, B.; Yin, W. Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir, China. Water Sci. Eng. 2015, 8, 30–39. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Q.; Li, C.; Wang, X.; Cai, Y.; Cui, G.; Yang, Z. An improved multi-objective optimization model for supporting reservoir operation of China’s South-to-North Water Diversion Project. Sci. Total Environ. 2016, 575, 970. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Tang, D.; Ding, Y.; Agoramoorthy, G. Incorporating water consumption into crop water footprint: A case study of China’s South-North Water Diversion Project. Sci. Total Environ. 2016, 545–546, 601. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xie, P.; Shen, H.; Xu, J.; Wang, P.; Zhang, B. A novel flushing strategy for diatom bloom prevention in the lower-middle Hanjiang River. Water Res. 2012, 46, 2525–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Wang, X.; Zhang, L.; Zhang, T.; Yang, C.; Song, X.X.; Yang, Q. Improving forecasting accuracy of river flow using gene expression programming based on wavelet decomposition and de-noising. Hydrol. Res. 2017, 49, nh2017115. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, H. South-to-north Water Transfer Schemes for China. Int. J. Water Resour. Dev. 2002, 18, 453–471. [Google Scholar] [CrossRef]
- Gu, W. Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China. Water Resour. Manag. 2012, 26, 3479–3493. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank correlation methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Sagarika, S.; Kalra, A.; Ahmad, S. Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J. Hydrol. 2014, 517, 36–53. [Google Scholar] [CrossRef]
- Chen, Y.D.; Zhang, Q.; Xu, C.Y.; Lu, X.; Zhang, S. Multiscale streamflow variations of the Pearl River basin and possible implications for the water resource management within the Pearl River Delta, China. Quat. Int. 2010, 226, 44–53. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Liang, W.; Liu, Y.; Wang, Y. Driving forces of changes in the water and sediment relationship in the Yellow River. Sci. Total Environ. 2017, 576, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Weiss, L.L.; Wilson, W.T. Evaluation of significance of slope changes in double mass curves. Eos Trans. Am. Geophys. Union 1953, 34, 893–896. [Google Scholar] [CrossRef]
- Ward, J.M.; Jackson, C.R. Sediment trapping eithin forestry streamside management zones: Georgia piedmont, USA. J. Am. Water Resour. Assoc. 2010, 40, 1421–1431. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J. An Empirical Water Budget Model as a Tool to Identify the Impact of Land-use Change in Stream Flow in Southeastern Australia. Water Resour. Manag. 2013, 27, 4941–4958. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K.; Outhet, D.; Massey, C. Application of the River Styles framework as a basis for river management in New South Wales, Australia. Appl. Geogr. 2002, 22, 91–122. [Google Scholar] [CrossRef]
- Duan, C.; Wu, L.; He, L.; Wang, S. Spatio-temporal distribution pattern of vegetation coverage in Junggar Basin, Xinjiang. Acta Ecol. Sin. 2016, 36, 72–76. [Google Scholar] [CrossRef]
- Duo, A.; Zhao, W.; Qu, X.; Jing, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar] [CrossRef]
Name | Completion Time | Normal Storage Water Level (m) | Total Capacity (1 × 1010 m3) |
---|---|---|---|
Danjiangkou | 1974 | 170.00 | 29.05 |
Wangfuzhou | 1999 | 86.23 | 3.10 |
Cuijiaying | 2000 | 62.73 | 2.45 |
Terms | Source |
---|---|
Sediment data | Yangtze River Water Resources Commission, Hanjiang Hydrological Yearbook |
Streamflow data | Hubei Province Hydrology and Water Resources Bureau |
Meteorological data | China Meteorological Data Sharing Network |
GDP | Statistical bulletin of national economic and social development in Hubei province |
NDVI data | National Aeronautics and Space Administration |
Factors | MK Test | Linear Regression | ||
---|---|---|---|---|
Zall | Sig. Level | Slope | Sig. Level | |
Sediment load (106 kg/year) | 6.09 | 0.01 | −10.55 | 0.001 |
Precipitation (mm/year) | −0.39 | 0.05 | 18.90 | 0.10 |
Water discharge (104 m3/year) | 1.45 | 0.01 | −0.23 | 0.05 |
Potential evapotranspiration (mm/year) | 1.39 | 0.01 | 9.86 | 0.05 |
Vegetation coverage (%) | - | - | −0.67 | 0.05 |
Periods | Factors | Mean Value | Maximum | Minimum |
---|---|---|---|---|
1965–1975 | Precipitation (mm) | 899 | 1117 | 562 |
Streamflow (104 m3) | 51 | 66 | 25 | |
Sediment loads (108 kg) | 477 | 1320 | 172 | |
1975–1985 | Precipitation (mm) | 942 | 1410 | 576 |
Streamflow (104 m3) | 64 | 110 | 31 | |
Sediment loads (108 kg) | 288 | 640 | 84 | |
1985–1995 | Precipitation (mm) | 895 | 1120 | 693 |
Streamflow (104 m3) | 49 | 74 | 35 | |
Sediment loads (108 kg) | 127 | 230 | 60 | |
1995–2005 | Precipitation (mm) | 888 | 1197 | 618 |
Streamflow (104 m3) | 42 | 63 | 22 | |
Sediment loads (108 kg) | 77 | 155 | 7 | |
2005–2015 | Precipitation (mm) | 870 | 1149 | 564 |
Streamflow (104 m3) | 49 | 78 | 25 | |
Sediment loads (108 kg) | 57 | 171 | 7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Wang, X.; Yang, C.; Liu, X.; Yang, Q. Changes and Driving Forces of the Water-Sediment Relationship in the Middle Reaches of the Hanjiang River. Water 2018, 10, 887. https://doi.org/10.3390/w10070887
Lu X, Wang X, Yang C, Liu X, Yang Q. Changes and Driving Forces of the Water-Sediment Relationship in the Middle Reaches of the Hanjiang River. Water. 2018; 10(7):887. https://doi.org/10.3390/w10070887
Chicago/Turabian StyleLu, Xiaorong, Xuelei Wang, Chao Yang, Xi Liu, and Qing Yang. 2018. "Changes and Driving Forces of the Water-Sediment Relationship in the Middle Reaches of the Hanjiang River" Water 10, no. 7: 887. https://doi.org/10.3390/w10070887
APA StyleLu, X., Wang, X., Yang, C., Liu, X., & Yang, Q. (2018). Changes and Driving Forces of the Water-Sediment Relationship in the Middle Reaches of the Hanjiang River. Water, 10(7), 887. https://doi.org/10.3390/w10070887