Impacts of Climate Change on Flood-Prone Areas in Davao Oriental, Philippines
Abstract
:1. Introduction
2. Study Area and Data Set
2.1. Study Site
2.2. Data Set
2.2.1. Rainfall Records
2.2.2. Rainfall Projections: CMIP5 Dataset
2.2.3. Digital Elevation Model (DEM)
2.2.4. Administration Boundaries
2.2.5. Population and Socioeconomic Data
2.2.6. Soil Type
3. Methodology
3.1. Criteria and Indicators Selection
3.1.1. Rainfall
- (1)
- Convert the area-averaged daily rainfalls to point layers to be the same as the NCDC data points in Davao Oriental;
- (2)
- The spatial rainfall patterns in the observed rainfalls are applied to the projected rainfalls, as follows:
- (3)
- Re-project the outcome of Equation (3) to UTM51 to be the same as the other indicators.
3.1.2. Soil
3.1.3. Slope
3.1.4. Elevation
3.1.5. Drainage Density
3.1.6. Distance to the Main Channel
3.2. AHP Modeling Process
3.2.1. Pairwise Comparison
3.2.2. Normalization
3.2.3. Consistency Analysis
3.3. Evaluation of Rainfall and Temperature Projections
4. Results
4.1. Vulnerability Map
4.2. Hazard Map
4.3. Risk Map
5. Discussion
5.1. Temperature and Rainfall Projections
5.2. Weighted Overlay Analysis
5.3. Multicriteria Decision Analysis (MCDA)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Summary of CMIP5 GCMs Used in Rainfall and Temperature Analysis
No. | Institution | Model Name | Spatial Resolution (Lat. × Lon., degree) |
---|---|---|---|
1 | Commonwealth Scientific and Industrial Research Organization CSIRO), Australia and Bureau of Meteorology (BOM), Australia | ACCESS1-0 | 1.25 × 1.875 |
2 | ACCESS1-3 | 1.25 × 1.875 | |
3 | Beijing Climate Center, China Meteorological Administration | bcc-csm1-1 | 2.7906 × 2.8125 |
4 | bcc-csm1-1-m | 2.7906 × 2.8125 | |
5 | Beijing Normal University | BNU-ESM | 2.7906 × 2.8125 |
6 | Canadian Centre for Climate Modelling and Analysis, Canada | CanESM2 | 2.7906 × 2.8125 |
7 | National Center for Atmospheric Research, USA | CCSM4 | 0.9424 × 1.25 |
8 | National Science Foundation, Department of Energy, NCAR, USA | CESM1-BGC | 0.9424 × 1.25 |
9 | CESM1-CAM5 | 0.9424 × 1.25 | |
10 | Euro-Mediterraneo sui Cambiamenti Climatici, Italy | CMCC-CM | 0.7484 × 0.75 |
11 | CMCC-CMS | 3.7111 × 3.75 | |
12 | Centre National de Recherches Meteorologiques, Meteo-France, France | CNRM-CM5 | 1.4008 × 1.40625 |
13 | Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia | CSIRO-Mk3-6-0 | 1.8653 × 1.875 |
14 | European Centre for Medium-Range Weather Forecasts | EC-EARTH | 1.1215 × 1.125 |
15 | Laboratory Numerical Model for Atmospheric Sciences and Geophysical Fluid Dynamics | FGOALS-g2 | 2.7906 × 2.8125 |
>16 | >The First Institute of Oceanography Earth System Model | >FIO-ESM | >2 × 2.8125 |
17 | NOAA Geophysical Fluid Dynamics Laboratory, USA | GFDL-CM3 | 2 × 2.5 |
18 | GFDL-ESM2G | 2.0225 × 2.5 | |
19 | GFDL-ESM2M | 2.0225 × 2.5 | |
20 | NASA Goddard Institute for Space Studies | GISS-E2-H | 2 × 2.5 |
21 | GISS-E2-H-CC | 2 × 2.5 | |
22 | GISS-E2-R | 2 × 2.5 | |
23 | GISS-E2-R-CC | 2 × 2.5 | |
24 | Met Office Hadley Centre, UK | HadGEM2-AO | 1.25 × 1.875 |
25 | HadGEM2-CC | 1.25 × 1.875 | |
26 | HadGEM2-ES | 1.25 × 1.875 | |
27 | Institute for Numerical Mathematics, Russia Institut Pierre-Simon Laplace, France | Inmcm4 | 1.5 × 2 |
28 | IPSL-CM5A-LR | 1.8947 × 3.75 | |
29 | IPSL-CM5A-MR | 1.2676 × 2.5 | |
30 | IPSL-CM5A-LR | 1.8947 × 3.75 | |
31 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies and Japan Agency for Marine-Earth Science and Technology | MIROC5 | 1.4008 × 1.40625 |
32 | MIROC-ESM | 2.7906 × 2.8125 | |
33 | MIROC-ESM-CHEM | 2.7906 × 2.8125 | |
34 | Ma× Planck Institute for Meteorology, Germany | MPI-ESM-LR | 1.8653 × 1.875 |
35 | MPI-ESM-MR | 1.8653 × 1.875 | |
36 | Meteorological Research Institute, Japan | MRI-CGCM3 | 1.12148 × 1.125 |
37 | MRI-ESM1 | 1.12148 × 1.125 | |
38 | Norwegian Climate Centre | NorESM1-M | 1.8947 × 2.5 |
39 | NorESM1-ME | 1.8947 × 2.5 |
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC Climate Change 2013: The Physical Science Basis, WG1. In The Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Babel, M.S.; Agarwal, A.; Swain, D.K.; Herath, S. Evaluation of climate change impacts and adaptation measures for rice cultivation in Northeast Thailand. Clim. Res. 2011, 46, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Dau, Q.V.; Kuntiyawichai, K. An assessment of potential climate change impacts on flood risk in central Vietnam. Eur. Sci. J. 2015, 1, 667–680. [Google Scholar]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). IPCC Special Report of the Intergovernmental Panel on Climate Change Managing the Risks of Extreme Events and Disasters to Advance Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Lee, H.S.; Trihamdani, A.R.; Kubota, T.; Iizuka, S.; Phuong, T.T.T. Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: Part 2. Influence of global warming. Sustain. Cities Soc. 2017, 31, 95–108. [Google Scholar] [CrossRef]
- Kubota, T.; Lee, H.S.; Trihamdani, A.R.; Phuong, T.T.T.; Tanaka, T.; Matsuo, K. Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: Part 1. Cooling effects of proposed green strategies. Sustain. Cities Soc. 2017, 32, 295–317. [Google Scholar] [CrossRef]
- Apurv, T.; Mehrotra, R.; Sharma, A.; Goyal, M.K.; Dutta, S. Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. J. Hydrol. 2015, 527, 281–291. [Google Scholar] [CrossRef]
- Huang, S.; Krysanova, V.; Hattermann, F. Projections of climate change impacts on floods and droughts in Germany using an ensemble of climate change scenarios. Reg. Environ. Chang. 2015, 15, 461–473. [Google Scholar] [CrossRef]
- Basconcillo, J.; Lucero, A.; Solis, A.; Sandoval, J.R.; Bautista, E.; Koizumi, T.; Kanamaru, H. Statistically Downscaled Projected Changes in Seasonal Mean Temperature and Rainfall in Cagayan Valley, Philippines. J. Meteorol. Soc. Jpn. Ser. II 2016, 94A, 151–164. [Google Scholar] [CrossRef]
- Coronas, J. Climate and Weather of the Philippines, 1903–1918; Bureau of Printing: Washington, DC, USA, 1920.
- Cabrera, J.S.; Lee, H.S. Flood risk assessment using gis-based multi-criteria analysis: A case study in Davao Oriental, Philippines. J. Hydro-Envion. Res. 2018. in review. [Google Scholar]
- Philippine Statistics Authority. Available online: https://www.psa.gov.ph/sites/default/files/attachments/hsd/pressrelease/R11.xlsx (accessed on 6 June 2017).
- Danumah, J.H.; Odai, S.N.; Saley, B.M.; Szarzynski, J.; Thiel, M.; Kwaku, A.; Kouame, F.K.; Akpa, L.Y. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire). Geoenviron. Disasters 2016, 3, 10. [Google Scholar] [CrossRef]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Zhang, K.; Manning, T.; Wu, S.; Rohm, W.; Silcock, D.; Choy, S. Capturing the Signature of Severe Weather Events in Australia Using GPS Measurements. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 1839–1847. [Google Scholar] [CrossRef]
- Mohammed, I.N.; Bomblies, A.; Wemple, B.C. The use of CMIP5 data to simulate climate change impacts on flow regime within the Lake Champlain Basin. J. Hydrol. Reg. Stud. 2015, 3, 160–186. [Google Scholar] [CrossRef]
- Wu, C.H.; Huang, G.R.; Yu, H.J. Prediction of extreme floods based on CMIP5 climate models: A case study in the Beijiang River basin, South China. Hydrol. Earth Syst. Sci. 2015, 19, 1385–1399. [Google Scholar] [CrossRef]
- Chatterjee, S.; Krishna, A.P.; Sharma, A.P. Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ. Earth Sci. 2014, 71, 357–374. [Google Scholar] [CrossRef]
- Frey, H.; Paul, F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Observ. Geoinf. 2012, 18, 480–490. [Google Scholar] [CrossRef]
- Ng, Z.F.; Akbari, A. ASTER-DEM Derived Flood Inundation Map Using 1D-2D Flood Modeller Pro in Kuantan River Basin. In Proceedings of the 2nd International Congress on Technology-Engineering & Science (ICONTES), Kuala Lumpur, Malaysia, 28–29 July 2016. [Google Scholar]
- Huong, D.T.V.; Nagasawa, R. Potential flood hazard assessment by integration of ALOS PALSAR and ASTER GDEM: A case study for the Hoa Chau commune, Hoa Vang district, in central Vietnam. J. Appl. Remote Sens. 2014, 8, 083626. [Google Scholar] [CrossRef]
- Othman, N.; Jafri, M.Z.M.; Lim, H.S.; Tan, K.C. Using ASTER GDEM and SRTM digital elevation models to generate contour lines over rugged terrain of Makkah. In Proceedings of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), Penang, Malaysia, 12–13 July 2011; pp. 11–13. [Google Scholar]
- Reddy, G.P.O.; Kumar, N.; Sahu, N.; Singh, S.K. Evaluation of automatic drainage extraction thresholds using ASTER GDEM and Cartosat-1 DEM: A case study from basaltic terrain of Central India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 95–104. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J.; et al. ASTER Global Digital Elevation Model. Version 2-Summary of Validation Results; NASA: Washington, DC, USA, 2011; p. 27.
- Ghangrekar, M.M.; Kharagpur, I. Module 5: Population Forecasting Lecture 5: Population Forecasting. Available online: http://scetcivil.weebly.com/uploads/5/3/9/5/5395830/m5_l5-population_forecasting.pdf (accessed on 4 December 2017).
- Alejandrino, I.K.; Lagmay, A.M.; Eco, R.N. Shallow Landslide Hazard Mapping for Davao Oriental, Philippines, Using a Deterministic GIS Model. In Communicating Climate-Change and Natural Hazard Risk and Cultivating Resilience: Case Studies for a Multi-disciplinary Approach; Drake, J.L., Kontar, Y.Y., Eichelberger, J.C., Rupp, T.S., Taylor, K.M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 131–147. [Google Scholar]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Drobnjak, S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water 2017, 9, 360. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980; p. 287. [Google Scholar]
- Di Baldassarre, G.; Castellarin, A.; Montanari, A.; Brath, A. Probability-weighted hazard maps for comparing different flood risk management strategies: A case study. Nat. Hazards 2009, 50, 479–496. [Google Scholar] [CrossRef]
- Yahaya, S.; Ahmad, N.; Abdalla, R.F. Multicriteria Analysis for Flood Vulnerable Areas in Hadejia-Jama’are River Basin, Nigeria. Eur. J. Sci. Res. 2010, 42, 71–83. [Google Scholar]
- Elkhrachy, I. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Space Sci. 2015, 18, 261–278. [Google Scholar] [CrossRef]
- Ebaid, H.M.; Farag, H.A.; Falaky, A.A.E. Using GIS and remote sensing approaches to delineate potential areas for runoff management applications in Egypt. Int. J. Environ. Sci. Eng. 2016, 7, 85–93. [Google Scholar]
- Nyarko, B.K. Application of a Rational Model in GIS for Flood Risk Assessment in Accra, Ghana. J. Spat. Hydrol. 2002, 2, 1–14. [Google Scholar]
- Apollonio, C.; Balacco, G.; Novelli, A.; Tarantino, E.; Piccinni, A. Land Use Change Impact on Flooding Areas: The Case Study of Cervaro Basin (Italy). Sustainability 2016, 8, 996. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Flash Flood Early Warning System Reference Guide; NOAA: Silver Spring, MD, USA, 2010; p. 204.
- Ganugula, G.V.B.; Sinha, R. GIS in Flood Hazard. Mapping: A Case Study of Kosi River Basin, India. GIS Dev. Wkly. 2005. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Pellicani, R.; Parisi, A.; Iemmolo, G.; Apollonio, C. Economic Risk Evaluation in Urban Flooding and Instability-Prone Areas: The Case Study of San Giovanni Rotondo (Southern Italy). Geosciences 2018, 8, 112. [Google Scholar] [CrossRef]
Data | Location/Station | Description | Duration/Year | Source | Data Format |
---|---|---|---|---|---|
Rainfall records | DOST-RXI Station | Daily observed rainfall at an elevation of 17.29 m | 2006–2015 | Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) | Spreadsheet file |
Hinatuan Station | Daily observed rainfall at an elevation of 3 m | 1973–2015 | National Center for Environmental Information (www.ncdc.noaa.gov) | Text file | |
NCDC dataset | Global daily precipitation with a spatial coverage of 0.5° lat. & 0.5° long. | 1979–2016 | National Climatic Data Center (ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/) | NetCDF | |
GPCC dataset | Global daily land surface precipitation with a spatial resolution of 1° lat. & 1° long. | 1988–2013 | Global Precipitation Climatology Centre (http://gpcc.dwd.de) | NetCDF | |
Rainfall and temperature projections | CMIP5 dataset | Multimodel daily rainfall and temperature predictions | 2006–2100 | Climate Variability and Predictability Project (http://clivar.ouce.ox.ac.uk/cmip5) | Text File |
DEM | Davao Oriental | ASTER GDEM V2 with a spatial resolution of 30 m | 2011 |
| GeoTIFF |
Administration map | Davao Oriental | Provincial, municipal and barangay boundaries. | 2015 |
| Shapefile |
Soil Map | Davao Oriental | Soil types | 2007 | Philippine GIS Organization (www.philgis.org) | Shapefile |
Population and Socioeconomic data | Davao Oriental | Census of Population and Housing | 2010 and 2015 | Philippine Statistics Authority (http://psa.gov.ph/) | Book and spreadsheet file |
Municipality | District | Population | Area (km2) | Density (/km2) | No. of Brgy. | |||
---|---|---|---|---|---|---|---|---|
Ratio (%) | 2010 | 2015 | Annual Growth Rate (%) | |||||
Baganga | 1st | 10.1 | 53,426 | 56,241 | 0.98 | 945.50 | 59 | 18 |
Banaybanay | 2nd | 7.4 | 39,121 | 41,117 | 0.95 | 408.52 | 100 | 14 |
Boston | 1st | 2.4 | 12,670 | 13,535 | 1.27 | 357.03 | 38 | 8 |
Caraga | 1st | 7.2 | 36,912 | 40,379 | 1.72 | 642.70 | 63 | 17 |
Cateel | 1st | 7.3 | 38,579 | 40,704 | 1.03 | 545.56 | 75 | 16 |
Gov. Gen. | 2nd | 9.9 | 50,372 | 55,109 | 1.73 | 365.75 | 150 | 20 |
Lupon | 2nd | 11.8 | 61,723 | 65,785 | 1.22 | 886.39 | 74 | 21 |
Manay | 1st | 7.6 | 40,577 | 42,690 | 0.97 | 418.36 | 100 | 17 |
Mati City | 2nd | 25.3 | 126,143 | 141,141 | 2.16 | 588.63 | 240 | 26 |
San Isidro | 2nd | 6.4 | 32,424 | 36,032 | 2.03 | 220.44 | 160 | 16 |
Tarragona | 1st | 4.7 | 25,671 | 26,225 | 0.41 | 300.76 | 87 | 10 |
Total | 517,618 | 558,958 | 1.47 | 5679.64 | 98 | 183 |
Scale | Judgement of Preference | Description |
---|---|---|
1 | Equal importance | Two factors contribute equally to the objective |
3 | Moderate | Experience and judgement slightly favor one over the other |
5 | Strong | Experience and judgement strongly favor one over the other |
7 | Very strong | Experience and judgement very strongly favor one over the other |
9 | Extreme importance | The evidence favoring one over other is of the highest possible validity |
2, 4, 6, 8 | Intermediate values | When compromise is needed |
Indicators | R | Sl | E | Dc | Dd | St |
---|---|---|---|---|---|---|
Rainfall (R) | 1 | 2 | 4 | 5 | 6 | 7 |
Slope (Sl) | 1/2 | 1 | 2 | 3 | 4 | 5 |
Elevation (E) | 1/4 | 1/2 | 1 | 2 | 3 | 4 |
Distance to main channel (Dc) | 1/5 | 1/3 | 1/2 | 1 | 2 | 3 |
Drainage (Dd) | 1/6 | 1/4 | 1/3 | 1/2 | 1 | 2 |
Soil type (St) | 1/7 | 1/5 | 1/4 | 1/3 | 1/2 | 1 |
Sum | 2.26 | 4.28 | 8.08 | 11.83 | 16.50 | 22.00 |
Indicators | R | Sl | E | Dc | Dd | St | Total | PV | CM |
---|---|---|---|---|---|---|---|---|---|
Rainfall (R) | 0.44 | 0.47 | 0.49 | 0.42 | 0.36 | 0.32 | 2.61 | 0.418 | 6.24 |
Slope (Sl) | 0.22 | 0.23 | 0.25 | 0.25 | 0.24 | 0.23 | 1.48 | 0.238 | 6.21 |
Elevation (E) | 0.11 | 0.12 | 0.12 | 0.17 | 0.18 | 0.18 | 0.91 | 0.147 | 6.16 |
Distance to main channel (Dc) | 0.09 | 0.08 | 0.06 | 0.08 | 0.12 | 0.14 | 0.58 | 0.095 | 6.06 |
Drainage (Dd) | 0.07 | 0.06 | 0.04 | 0.04 | 0.06 | 0.09 | 0.37 | 0.061 | 6.02 |
Soil type (St) | 0.06 | 0.05 | 0.03 | 0.03 | 0.03 | 0.05 | 0.25 | 0.041 | 6.06 |
Sum | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.000 | - |
Number of Criteria | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 |
Municipality | Current Scenario | Short-Term (2020–2030) | ||||||||
VL | L | M | H | VH | VL | L | M | H | VH | |
Boston | - | 19.0 | 78.0 | 3.0 | - | - | 22.5 | 74.6 | 3.0 | - |
Cateel | - | 57.5 | 30.8 | 11.1 | 0.6 | 0.6 | 64.6 | 26.3 | 8.1 | 0.4 |
Baganga | - | 67.0 | 31.6 | 1.3 | - | 1.2 | 89.7 | 8.8 | 0.2 | - |
Caraga | 2.4 | 83.6 | 13.5 | 0.5 | - | 3.2 | 82.3 | 14.0 | 0.5 | - |
Manay | 1.2 | 85.1 | 11.1 | 2.6 | - | 1.2 | 76.7 | 19.5 | 2.6 | - |
Tarragona | 4.2 | 74.2 | 21.6 | - | - | 4.2 | 73.6 | 22.3 | - | - |
Mati | 0.1 | 68.4 | 29.1 | 2.3 | - | 0.01 | 64.0 | 33.6 | 2.4 | - |
Lupon | 5.4 | 60.4 | 28.2 | 6.0 | - | 5.4 | 57.6 | 26.3 | 10.8 | - |
Banaybanay | 8.2 | 74.4 | 17.1 | 0.3 | - | 8.1 | 72.3 | 14.7 | 4.9 | - |
San Isidro | 0.5 | 65.1 | 31.9 | 2.6 | - | - | 55.6 | 37.5 | 6.9 | - |
Governor Generoso | - | 63.0 | 34.8 | 2.3 | - | - | 40.6 | 55.8 | 3.1 | 0.5 |
Municipality | Medium-Term (2050–2060) | Long-Term (2090–2100) | ||||||||
VL | L | M | H | VH | VL | L | M | H | VH | |
Boston | - | 23.9 | 73.6 | 2.4 | - | - | 24.0 | 76.0 | 0.04 | - |
Cateel | 0.6 | 73.4 | 18.7 | 6.9 | 0.4 | 0.6 | 64.6 | 28.6 | 5.8 | 0.4 |
Baganga | 1.2 | 90.5 | 8.0 | 0.2 | - | 1.2 | 90.5 | 8.1 | 0.2 | - |
Caraga | 5.4 | 85.3 | 9.3 | 0.1 | - | 5.4 | 86.2 | 8.3 | 0.1 | - |
Manay | 1.2 | 87.2 | 9.2 | 2.4 | - | 1.2 | 89.3 | 7.1 | 2.4 | - |
Tarragona | 4.2 | 78.4 | 17.4 | - | - | 4.2 | 78.4 | 17.4 | - | - |
Mati | 0.01 | 75.7 | 22.2 | 2.1 | - | 0.01 | 75.4 | 22.1 | 2.4 | - |
Lupon | 5.4 | 64.4 | 19.5 | 10.7 | - | 5.4 | 65.0 | 21.7 | 7.9 | - |
Banaybanay | 8.1 | 75.3 | 12.6 | 4.0 | - | 8.1 | 75.3 | 15.0 | 1.6 | - |
San Isidro | - | 59.1 | 34.0 | 6.9 | - | - | 68.7 | 26.0 | 5.2 | - |
Governor Generoso | - | 47.7 | 48.7 | 3.1 | 0.5 | - | 55.7 | 41.1 | 2.7 | 0.5 |
Municipality | Number of Barangays | ||
---|---|---|---|
Current Scenario | Short Term | Medium/Long Term | |
Boston | H (2) | H (2) | - |
Cateel | VH (1), H (7) | VH (1), H (6) | VH (1), H (6) |
Baganga | H (1) | H (2) | H (2) |
Caraga | H (3) | H (2) | H (1) |
Manay | H (2) | H (2) | H (2) |
Mati | H (3) | H (3) | H (3) |
Lupon | H (4) | H (7) | H (4) |
Banaybanay | H (1) | H (7) | H (4) |
San Isidro | H (1) | H (4) | H (3) |
Governor Generoso | H (3) | H (3), VH (1) | H (4), VH (1) |
Total | H = 27, VH = 1 | H = 38, VH = 2 | H = 29, VH = 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera, J.S.; Lee, H.S. Impacts of Climate Change on Flood-Prone Areas in Davao Oriental, Philippines. Water 2018, 10, 893. https://doi.org/10.3390/w10070893
Cabrera JS, Lee HS. Impacts of Climate Change on Flood-Prone Areas in Davao Oriental, Philippines. Water. 2018; 10(7):893. https://doi.org/10.3390/w10070893
Chicago/Turabian StyleCabrera, Jonathan Salar, and Han Soo Lee. 2018. "Impacts of Climate Change on Flood-Prone Areas in Davao Oriental, Philippines" Water 10, no. 7: 893. https://doi.org/10.3390/w10070893
APA StyleCabrera, J. S., & Lee, H. S. (2018). Impacts of Climate Change on Flood-Prone Areas in Davao Oriental, Philippines. Water, 10(7), 893. https://doi.org/10.3390/w10070893