Developing a Statistical Model to Improve Drinking Water Quality for Water Distribution System by Minimizing Heavy Metal Releases
Abstract
:1. Introduction
2. Methodology
2.1. Data Acquisition
2.1.1. Data Type Identification and Range Determination
2.1.2. Experiment Design and Experimental Data Recording
2.2. Model Fitting
2.3. Dual Response Surface Optimization
3. Application
3.1. Nonlinear Empirical Model
3.2. Dual Response Surface Model
3.3. MSWBO Approach
3.3.1. Maximum Permissible Metal Release
3.3.2. Variable Design
3.4. Results and Discussion
4. Conclusions
- It provides a quantitative optimal blending ratio of source waters to water utilities for minimizing the HMR in their water distribution systems.
- It has a wide range of applications, because the experiment of this model was designed in a variety of scenarios, even for some extreme situations.
- It shows a high computational efficiency, due to fact that the model only includes some second-order equations and inequalities, and also that the experiment showed that the run time is only several milliseconds.
- It exhibits a robust operation, since the MSWBO model considers the standard deviation and avoids ambiguity in the probability of inputs.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Imran, S.; Dietz, J.D.; Mutoti, G.; Xiao, W.; Taylor, J.S.; Desai, V. Optimizing Source Water Blends for Corrosion and Residual Control in Distribution Systems. J. AWWA 2006, 98, 107–115. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tsitifli, S. Potable Water Security Assessment: A Review on Monitoring, Modelling and Optimization Techniques, Applied to Water Distribution Networks. Desalin. Water Treat. 2017, 99, 18–26. [Google Scholar] [CrossRef]
- Peng, W.; Mayorga, R.V.; Imran, S. A rapid fuzzy optimization approach to source water blending problems in water distribution systems. Urban Water J. 2012, 9, 177–187. [Google Scholar] [CrossRef]
- Peng, W.; Mayorga, R.V.; Imran, S. A robust optimization approach for real-time multiple source water blending problem. J. Water Supply Res. Technol. 2012, 61, 111–122. [Google Scholar] [CrossRef]
- Imran, S.; Dietz, J.D.; Mutoti, G.; Taylor, J.S.; Randall, A.A.; Cooper, C.D. Red Water Release in Drinking Water Distribution Systems. J. AWWA 2005, 97, 93–100. [Google Scholar] [CrossRef]
- Mehrez, C.; Percia, C.; Oron, G. Optimal Operation of a Multisource and Multi-quality Regional Water System. Water Resour. Res. 1992, 128, 1199–1206. [Google Scholar] [CrossRef]
- Ostfeld, A.; Shamir, U. Design of Optimal Reliable Multi-Quality Water Supply Systems. J. Water Resour. Plan. Manag. ASCE 1996, 122, 322–333. [Google Scholar] [CrossRef]
- Yang, S.L.; Sun, Y.-H.; Yeh, W.W.-G. Optimization of Regional Water Distribution System with Blend Requirements. J. Water Resour. Plan. Manag. ASCE 2000, 26, 229–235. [Google Scholar] [CrossRef]
- Tu, M.Y.; Tsai, F.T.-C.; Yeh, W.W.-G. Optimization of Water Distribution and Water Quality by Hybrid Genetic Algorithm. J. Water Resour. Plan. Manag. ASCE 2005, 131, 431–440. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Borror, C.M.; Montgomery, D.C. Response surface design evaluation and comparison. J. Stat. Plan. Inference 2009, 139, 629–641. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Borror, C.M.; Kowalski, S.M. Response surface methodology: A retrospective and literature survey. J. Qual. Technol. 2004, 36, 53–77. [Google Scholar] [CrossRef]
- Yanikoglu, I.; den Denhertog, D.; Kleijnen, J.P.C. Robust Dual-Response Optimization. IIE Trans. 2016, 48, 298–312. [Google Scholar] [CrossRef]
- Huang, T.L.; Song, X.W.; Liu, X.Y. The Multi-objective Robust Optimization of The Loading Path in the T-shape Tube Hydroforming Based on Dual Response Surface Model. Int. J. Adv. Manuf. Technol. 2016, 82, 9–12. [Google Scholar] [CrossRef]
- Benayoun, R.; De Montgolfier, J.; Tergny, J.; Laritchev, O. Linear programming with multiple objective functions: STEP method (STEM). Math. Program. 1971, 1, 366–375. [Google Scholar] [CrossRef]
- Kuhn, H.W.; Tucker, A.W. Nonlinear programming. In Mathematical Statistics and Probabilities; Neyman, J., Ed.; Berkeley Symphony: Berkeley, CA, USA, 1951. [Google Scholar]
- Lin, D.; Tu, W. Dual response surface optimization. J. Qual. Technol. 1995, 27, 34–39. [Google Scholar] [CrossRef]
- Vining, G.G.; Myers, R.H. Combining taguchi and response surface philosophies: A dual response approach. J. Qual. Technol. 1990, 22, 38–45. [Google Scholar] [CrossRef]
- Chang, Y.C.; Jung, K. Effect of Distribution System Materials and Water Quality on Heterotrophic Plate Counts and Biofilm Proliferation. J. Microbial. Biotechnol. 2004, 14, 1114–1119. [Google Scholar]
- The Lead and Copper Rule. Available online: https://www.epa.gov/dwreginfo/lead-and-copper-rule (accessed on 11 July 2018).
- The Secondary Maximum Contaminant Levels. Available online: https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals (accessed on 11 July 2018).
- Tampa Bay Water (TBW). Available online: http://www.tampabaywater.org (accessed on 11 July 2018).
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. 1951, B, 1–45. [Google Scholar]
- Taylor, J.; Dietz, J.D.; Randall, A.A.; Hong, S.K.; Norris, C.D.; Mulford, L.A.; Arevalo, J.M.; Imran, S.; Le Puil, M.; Liu, S.; et al. Effects of Blend on Distribution System Water Quality; AwwaRF, Repor No. 91065F; Denver; Water Environment Research Foundation: Alexandria, VA, USA, 2005. [Google Scholar]
- Xiao, W. Effect of Source Water Blend on Copper Release in a Pipe Distribution System: Thermodynamic and Empirical Models. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2004. [Google Scholar]
- Bingham, D.; Nair, V.N. Noise variable settings in robust design experiments. Technometrics 2012, 54, 388–397. [Google Scholar] [CrossRef]
Parameter | GW | SW | DW |
---|---|---|---|
Alkalinity (mg/L) as CaCO3 | 225 | 50 | 50 |
Calcium (mg/L) as CaCO3 | 200 | 50 | 50 |
Dissolved oxygen (mg/L) | 8 | 8 | 8 |
pH | 7.9 | 8.2 | 8.3 |
Silica (mg/L) | 14 | 7 | 1 |
HRT (day) | 5 | 5 | 5 |
Sodium (mg/L) | 10 | 15 | 30 |
Chloride (mg/L) | 15 | 10 | 50 |
Sulfates (mg/L) | 10 | 180 | 30 |
Temperature (°C) | 25 | 25 | 25 |
Parameter | GW | SW | DW |
---|---|---|---|
Alkalinity (mg/L) as CaCO3 | 225 | [50, 100] | [50, 100] |
Dissolved oxygen (mg/L) | 8 | 8 | 8 |
Silica (mg/L) | 14 | [7, 14] | [1, 14] |
HRT (day) | 5 | 5 | 5 |
Sodium (mg/L) | 10 | 15 | 30 |
Chloride (mg/L) | 15 | 10 | 50 |
Sulfates (mg/L) | [10, 80] | 180 | [30, 80] |
pH | [7.9, 8.5] | 8.2 | 8.3 |
Temperature (°C) | 25 | 25 | 25 |
x | y | z | Pb | Cu | Fe |
---|---|---|---|---|---|
1 | 0 | 0 | 3.53 | 1.15 | 0.08 |
0.8 | 0.2 | 0 | 2.34 | 1.12 | 0.01 |
0.6 | 0 | 0.4 | 8.13 | 0.96 | 0.03 |
0.43 | 0.41 | 0.16 | 2.91 | 0.97 | 0.01 |
0.2 | 0.8 | 0 | 2.74 | 0.88 | 0.04 |
0 | 0.1 | 0.9 | 6 | 0.66 | 0.39 |
0 | 1 | 0 | 4.2 | 0.76 | 0.21 |
0 | 0.9 | 0.1 | 3.26 | 0.75 | 0.24 |
0.2 | 0.6 | 0.2 | 2.54 | 0.86 | 0.1 |
0.1 | 0.4 | 0.5 | 3.28 | 0.76 | 0.25 |
0.7 | 0.2 | 0.1 | 3.48 | 1.07 | 0.01 |
0.1 | 0 | 0.9 | 8.34 | 0.7 | 0.3 |
0 | 0 | 1 | 7.64 | 0.65 | 0.4 |
0.19 | 0 | 0.81 | 8.75 | 0.75 | 0.22 |
0.1 | 0.3 | 0.6 | 4.11 | 0.75 | 0.26 |
0.5 | 0.1 | 0.4 | 6.71 | 0.94 | 0.03 |
0.7 | 0.1 | 0.2 | 5.27 | 1.04 | 0.01 |
0.1 | 0.9 | 0 | 3.39 | 0.83 | 0.11 |
x | y | z | Pb | Cu | Fe | Alk SW | Alk DW | SiO2 SW | SiO2 DW | SO4 GW | SO4 DW | pH GW |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 3.05 | 1 | 0.08 | - | - | - | - | 10 | - | 8.3 |
0.8 | 0.2 | 0 | 1.94 | 1 | 0.01 | 100 | - | 14 | - | 10 | - | 8.35 |
0.6 | 0 | 0.4 | 7.72 | 0.89 | 0.03 | - | 50 | - | 14 | 20.3 | 36.9 | 7.95 |
0.43 | 0.41 | 0.16 | 2.99 | 0.89 | 0.01 | 50 | 50 | 7 | 1 | 10 | 30 | 7.93 |
0.2 | 0.8 | 0 | 2.75 | 0.86 | 0.04 | 50 | - | 8.56 | - | 10 | - | 7.9 |
0 | 0.1 | 0.9 | 9.4 | 0.93 | 0.21 | 100 | 100 | 7 | 1 | - | 30 | - |
0 | 1 | 0 | 4.2 | 0.72 | 0.2 | 51.1 | - | 8.7 | - | - | - | - |
0 | 0.9 | 0.1 | 3.33 | 0.75 | 0.2 | 58.5 | 50.9 | 8.7 | 1.19 | - | 30 | - |
0.2 | 0.6 | 0.2 | 2.54 | 0.84 | 0.1 | 50 | 50 | 8.24 | 1.41 | 10 | 30 | 7.9 |
0.1 | 0.4 | 0.5 | 3.8 | 0.8 | 0.2 | 62.1 | 65.2 | 7.91 | 2.14 | 10 | 30 | 7.9 |
0.7 | 0.2 | 0.1 | 3.01 | 1 | 0.01 | 100 | 100 | 7 | 1 | 10 | 30 | 8.45 |
0.1 | 0 | 0.9 | 10 | 0.89 | 0.2 | - | 89.9 | - | 3.4 | 11.8 | 46 | 7.9 |
0 | 0 | 1 | 10 | 0.7 | 0.24 | - | 100 | - | 10.4 | - | 53.8 | - |
0.19 | 0 | 0.81 | 9.26 | 0.75 | 0.2 | - | 58.9 | - | 2.65 | 10 | 30 | 7.9 |
0.1 | 0.3 | 0.6 | 5 | 0.81 | 0.2 | 61.9 | 73.7 | 7.71 | 2.42 | 10 | 30 | 7.9 |
0.5 | 0.1 | 0.4 | 6.71 | 0.93 | 0.03 | 50 | 50 | 7.22 | 1.89 | 10 | 30 | 7.9 |
0.7 | 0.1 | 0.2 | 5.37 | 0.99 | 0.01 | 64.2 | 78.4 | 14 | 14 | 10 | 30 | 7.95 |
0.1 | 0.9 | 0 | 3.39 | 0.79 | 0.11 | 50 | - | 8.64 | - | 10 | - | 7.9 |
x | y | z | Pb | Cu | Fe | Alk SW | Alk DW | SiO2 SW | SiO2 DW | SO4 GW | SO4 DW | pH GW |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 3.05 | 1 | 0.08 | - | - | - | - | 10 | - | 8.3 |
0.8 | 0.2 | 0 | 1.94 | 1 | 0.01 | 100 | - | 14 | - | 10 | - | 8.35 |
0.6 | 0 | 0.4 | 7.72 | 0.89 | 0.03 | - | 50 | - | 14 | 20.3 | 36.9 | 7.95 |
0.43 | 0.41 | 0.16 | 2.99 | 0.89 | 0.01 | 50 | 50 | 7 | 1 | 10 | 30 | 7.93 |
0.2 | 0.8 | 0 | 2.75 | 0.78 | 0.04 | 50 | - | 14 | - | 10 | - | 7.91 |
0 | 0.1 | 0.9 | 9.4 | 0.93 | 0.21 | 100 | 100 | 7 | 1 | - | 30 | - |
0 | 1 | 0 | 4.2 | 0.64 | 0.2 | 51.1 | - | 14 | - | - | - | - |
0 | 0.9 | 0.1 | 3.33 | 0.64 | 0.2 | 58.5 | 50.9 | 14 | 8.04 | - | 30 | - |
0.2 | 0.6 | 0.2 | 2.54 | 0.74 | 0.1 | 50 | 50 | 14 | 13.9 | 10 | 30 | 7.91 |
0.1 | 0.4 | 0.5 | 3.8 | 0.66 | 0.2 | 62.1 | 65.2 | 14 | 14 | 10 | 30 | 8.19 |
0.7 | 0.2 | 0.1 | 3.23 | 1 | 0.01 | 100 | 100 | 14 | 1 | 10 | 30 | 8.27 |
0.1 | 0 | 0.9 | 10 | 0.67 | 0.2 | - | 89.9 | - | 14 | 11.8 | 46 | 7.91 |
0 | 0 | 1 | 10 | 0.7 | 0.24 | - | 100 | - | 10.4 | - | 53.8 | - |
0.19 | 0 | 0.81 | 9.13 | 0.62 | 0.2 | - | 60.9 | - | 14 | 11.2 | 35.1 | 7.91 |
0.1 | 0.3 | 0.6 | 5 | 0.65 | 0.2 | 61.9 | 73.7 | 14 | 14 | 10 | 30 | 7.9 |
0.5 | 0.1 | 0.4 | 6.58 | 0.84 | 0.03 | 50 | 50 | 14 | 14 | 14.6 | 33.7 | 7.92 |
0.7 | 0.1 | 0.2 | 5.37 | 0.99 | 0.01 | 64.2 | 78.4 | 14 | 14 | 10 | 30 | 7.95 |
0.1 | 0.9 | 0 | 3.39 | 0.71 | 0.11 | 50 | - | 14 | - | 10 | - | 7.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Mayorga, R.V. Developing a Statistical Model to Improve Drinking Water Quality for Water Distribution System by Minimizing Heavy Metal Releases. Water 2018, 10, 939. https://doi.org/10.3390/w10070939
Peng W, Mayorga RV. Developing a Statistical Model to Improve Drinking Water Quality for Water Distribution System by Minimizing Heavy Metal Releases. Water. 2018; 10(7):939. https://doi.org/10.3390/w10070939
Chicago/Turabian StylePeng, Wei, and Rene V. Mayorga. 2018. "Developing a Statistical Model to Improve Drinking Water Quality for Water Distribution System by Minimizing Heavy Metal Releases" Water 10, no. 7: 939. https://doi.org/10.3390/w10070939
APA StylePeng, W., & Mayorga, R. V. (2018). Developing a Statistical Model to Improve Drinking Water Quality for Water Distribution System by Minimizing Heavy Metal Releases. Water, 10(7), 939. https://doi.org/10.3390/w10070939