Irrigation Salinity Risk Assessment and Mapping in Arid Oasis, Northwest China
Abstract
:1. Introduction
2. Composite Risk Index for Irrigation Salinity Hazard
2.1. Developing a PSR Based Risk Index for Irrigation Salinity
2.2. Calculating Grey Relational Coefficients for Risk Parameters
2.3. Determining Weights for Risk Parameters
2.3.1. Subjective Weight Assignment
2.3.2. Objective Weight Assignment
2.3.3. Comprehensive Weight Assignment
3. A Case Study on Keriya Oasis
3.1. Material and Methods
3.1.1. Study Area
3.1.2. Risk Parameters of Composite Risk Index for Irrigation Salinity
3.1.3. Data Collection and Analysis
Traditional Knowledge
Soil and Groundwater Data
3.2. Spatial Distribution of Risk Parameters
3.3. Calculation of Parameter and Weights
3.3.1. Weights of AHP
3.3.2. Parameter Calculation
3.3.3. Calculation of MDM, rij and CRI
3.3.4. Spatial Distribution of CRI
3.4. Scenario Validation
4. Results
4.1. Composite Risk Index Values MDM, rij and CRI
4.2. Scenario Validation
4.3. Spatial Distribution of Salinity Risk Index
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nurmemet, I.; Ghulam, A.; Tiyip, T.; Elkadiri, R.; Ding, J.L.; Maimaitiyiming, M.; Abliz, A.; Sawut, M.; Zhang, F.; Abliz, A.; et al. Monitoring soil salinization in Keriya River Basin, Northwestern China using passive reflective and active microwave remote sensing data. Remote Sens. 2015, 7, 8803–8829. [Google Scholar] [CrossRef]
- Abliz, A.; Tiyip, T.; Ghulam, A.; Halik, Ü.; Ding, J.L.; Sawut, M.; Zhang, F.; Nurmemet, I.; Abliz, A. Effects of shallow groundwater table and salinity on soil salt dynamics in the Keriya Oasis, Northwestern China. Environ. Earth Sci. 2016, 75, 260. [Google Scholar] [CrossRef]
- Peck, A.J.; Hatton, T. Salinity and the discharge of salts from catchments in Australia. J. Hydrol. 2003, 272, 191–202. [Google Scholar] [CrossRef]
- Herrero, J.; Pérez-Coveta, O. Soil salinity changes over 24 years in a Mediterranean irrigated district. Geoderma 2005, 125, 287–308. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Rhoades, J.D.; Šimůnek, J. Leaching requirement for soil salinity control: Steady-state versus transient models. Agric. Water Manag. 2007, 90, 165–180. [Google Scholar] [CrossRef]
- Pannell, D.J.; Ewing, M.A. Managing secondary dryland salinity: Options and challenges. Agric. Water Manag. 2006, 80, 41–56. [Google Scholar] [CrossRef]
- Wiebe, B.H.; Eilers, R.G.; Eilers, W.D.; Brierley, J.A. Application of a risk indicator for assessing trends in dryland salinization risk on the Canadian Prairies. Can. J. Soil Sci. 2007, 87, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Lin, Z.; Liu, L.; Zimmermann, D. Assessing secondary soil salinization risk based on the PSR sustainability framework. J. Environ. Manag. 2013, 128, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Aragüés, R.; Urdanoz, V.; Çetin, M.; Kirda, C.; Daghari, H.; Ltifi, W.; Lahlou, M.; Douaik, A. Soil salinity related to physical soil characteristics and irrigation management in four Mediterranean irrigation districts. Agric. Water Manag. 2011, 98, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Hamzeh, S.; Naseri, A.A.; AlaviPanah, S.K.; Mojaradi, B.; Bartholomeus, H.M.; Clevers, J.G.P.W.; Behzad, M. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral: Vegetation indices. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 282–290. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Chen, X. Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application: A laboratory experiment. Geoderma 2012, 170, 103–111. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Martius, C.; Park, S.J.; Hendrickx, J.M.H. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma 2011, 163, 55–62. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Brus, D.J.; Walvoort, D.J.J. Geostatistical monitoring of soil salinity in Uzbekistan by repeated EMI surveys. Geoderma 2014, 213, 600–607. [Google Scholar] [CrossRef]
- Huang, J.; Prochazka, M.J.; Triantafilis, J. Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley, Australia. Sci. Total Environ. 2016, 551–552, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, D.; de Groot, R.S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 2008, 8, 14–25. [Google Scholar] [CrossRef]
- Grundy, M.J.; Silburn, D.M.; Chamberlain, T. A risk framework for preventing salinity. Environ. Hazards 2007, 7, 97–105. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J. Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method. Agric. Water Manag. 2010, 97, 1961–1970. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.; Liu, L.; State, N.D.; Dakota, N. Developing a Composite Risk Index for Secondary Soil Salinization Based on the PSR Sustainability Framework. Ph.D. Thesis, International Environmental Modelling and Software Society (iEMSs), Manno, Switzerland, 2012. [Google Scholar]
- Lobell, D.B.; Lesch, S.M.; Corwin, D.L.; Ulmer, M.G.; Anderson, K.A.; Potts, D.J.; Doolittle, J.A.; Matos, M.R.; Baltes, M.J. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. J. Environ. Qual. 2010, 39, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.F.; Kuo, J.; Lo, S.L. Review of PSR framework and development of a DPSIR model to assess greenhouse effect in Taiwan. Environ. Monit. Assess. 2011, 177, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Eziz, M.; Yimit, H.; Mohammad, A.; Huang, Z. Oasis land-use change and its effects on the oasis eco-environment in Keriya Oasis, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 244–252. [Google Scholar] [CrossRef]
- Gong, L.; Ran, Q.; He, G.; Tiyip, T. A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang, China. Soil Tillage Res. 2015, 146, 223–229. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.; Liu, L. Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis. Sci. Total Environ. 2012, 439, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Huffman, E.; Eilers, R.G.; Padbury, G.; Wall, G.; MacDonald, K.B. Canadian agri-environmental indicators related to land quality: Integrating census and biophysical data to estimate soil cover, wind erosion and soil salinity. Agric. Ecosyst. Environ. 2000, 81, 113–123. [Google Scholar] [CrossRef]
- Kairis, O.; Kosmas, C.; Karavitis, C.; Ritsema, C.; Salvati, L.; Acikalin, S.; Alcalá, M.; Alfama, P.; Atlhopheng, J.; Barrera, J.; et al. Evaluation and selection of indicators for land degradation and desertification monitoring: Types of degradation, causes, and implications for management. Environ. Manag. 2013, 54, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.; Kairis, O.; Karavitis, C.; Acikalin, S.; Alcalá, M.; Alfama, P.; Atlhopheng, J.; Barrera, J.; Fernandez, F.; Gokceoglu, C.; et al. An exploratory analysis of land abandonment drivers in areas prone to desertification. Catena 2014, 128, 252–261. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Zeng, S.-L.; Gao, Y.; Ouyang, Z.-T.; Li, B.; Fang, C.-M.; Zhao, B. Assessing impact of land uses on land salinization in the Yellow River Delta, China using an integrated and spatial statistical model. Land Use Policy 2011, 28, 857–866. [Google Scholar] [CrossRef]
- Maxim, L.; Spangenberg, J.H.; O’Connor, M. An analysis of risks for biodiversity under the DPSIR framework. Ecol. Econ. 2009, 69, 12–23. [Google Scholar] [CrossRef]
- Böhringer, C.; Jochem, P.E.P. Measuring the immeasurable—A survey of sustainability indices. Ecol. Econ. 2007, 63, 1–8. [Google Scholar] [CrossRef]
- Kondyli, J. Measurement and evaluation of sustainable development: A composite indicator for the islands of the North Aegean region, Greece. Environ. Impact Assess. Rev. 2010, 30, 347–356. [Google Scholar] [CrossRef]
- Floridi, M.; Pagni, S.; Falorni, S.; Luzzati, T. An exercise in composite indicators construction: Assessing the sustainability of Italian regions. Ecol. Econ. 2011, 70, 1440–1447. [Google Scholar] [CrossRef]
- Shaker, R.R. A mega-index for the Americas and its underlying sustainable development correlations. Ecol. Indic. 2018, 89, 466–479. [Google Scholar] [CrossRef]
- Berkes, F.; Colding, J.; Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 2010, 10, 1251–1262. [Google Scholar] [CrossRef]
- Ambrose, W.G.; Clough, L.M.; Johnson, J.C.; Greenacre, M.; Griffith, D.C.; Carroll, M.L.; Whiting, A. Interpreting environmental change in coastal Alaska using traditional and scientific ecological knowledge. Front. Mar. Sci. 2014, 1, 40. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, U. An analytical hierarchy process (AHP)—Guided decision model for underground mining method selection. Int. J. Min. Reclam. Environ. 2014, 26, 324–336. [Google Scholar] [CrossRef]
- Rao, R.V. Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods; Springer-Verlag: London, UK, 2013; Volume 2, p. 4471. ISBN 978-1-4471-4375-8. [Google Scholar]
- Zhao, J.; Jin, J.; Zhu, J.; Xu, J.; Hang, Q.; Chen, Y.; Han, D. Water resources risk assessment model based on the subjective and objective combination weighting methods. Water Resour. Manag. 2016, 30, 3027–3042. [Google Scholar] [CrossRef]
- Spangenberg, J.H.; Douguet, J.M.; Settele, J.; Heong, K.L. Escaping the lock-in of continuous insecticide spraying in rice: Developing an integrated ecological and socio-political DPSIR analysis. Ecol. Model. 2015, 295, 188–195. [Google Scholar] [CrossRef]
- Dubey, A.K.; Yadava, V. Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Opt. Lasers Eng. 2008, 46, 124–132. [Google Scholar] [CrossRef]
- Singh, S. Optimization of machining characteristics in electric discharge machining of 6061Al/Al2O3p/20P composites by grey relational analysis. Int. J. Adv. Manuf. Technol. 2012, 63, 1191–1202. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Forrest, J. Sequence Operators and Grey Data Mining. In Grey Data Analysis; Springer: Singapore, 2017; pp. 45–65. ISBN 978-981-10-1841-1. [Google Scholar]
- Deng, J.L. Control Problem of Grey Systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
- Zeng, G.; Jiang, R.; Huang, G.; Xu, M.; Li, J. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis. J. Environ. Manag. 2007, 82, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Pai, T.Y.; Hanaki, K.; Ho, H.H.; Hsieh, C.M. Using grey system theory to evaluate transportation effects on air quality trends in Japan. Transp. Res. Part D Transp. Environ. 2007, 12, 158–166. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Li, W.-D.; Shi, H.-H.; Jia, X.-H. Gray model for ecological risk assessment and its application in salinization oasis agroecosystem. J. Desert Res. 2002, 22, 617–622. (In Chinese) [Google Scholar]
- Veisi, H.; Liaghati, H.; Alipour, A. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecol. Indic. 2016, 60, 644–654. [Google Scholar] [CrossRef]
- Wang, W.-D.; Guo, J.; Fang, L.-G.; Chang, X.-S. A subjective and objective integrated weighting method for landslides susceptibility mapping based on GIS. Environ. Earth Sci. 2012, 65, 1705–1714. [Google Scholar] [CrossRef]
- Wei, G.-W. Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting. Knowl.-Based Syst. 2008, 21, 833–836. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, H. Comparison of four methods for deciding objective weights of features for classifying stored-grain insects based on extension theory. Trans. CSAE 2009, 25, 132–136. (In Chinese) [Google Scholar]
- Hashemi, H.; Mousavi, S.M.; Zavadskas, E.K.; Chalekaee, A.; Turskis, Z. A new group decision model based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for contractor assessment problem. Sustainbility 2018, 10, 1635. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y. Land exploitation resulting in soil salinization in a desert-oasis ecotone. Catena 2013, 100, 50–56. [Google Scholar] [CrossRef]
- Halik, W.; Tiyip, T.; Yimit, H.; He, L. Water resources utilization and eco-environmental changing research in Keriya Valley. Syst. Sci. Compr. Stud. Agric. 2006, 22, 283–287. (In Chinese) [Google Scholar]
- Jiang, Y.; Zhou, C.-H.; Cheng, W.-M. Streamflow trends and hydrological response to climatic change in Tarim headwater basin. J. Geogr. Sci. 2007, 17, 51–56. [Google Scholar] [CrossRef]
- Lu, F.; Xu, J.-H.; Chen, Y.-N.; Li, W.-H.; Zhang, L.-J. Annual runoff change and it’s response to climate change in the headwater area of the Yarkand River in the recent 50 years. Quat. Sci. 2010, 30, 152–158. (In Chinese) [Google Scholar] [CrossRef]
- Tsouni, A.; Kontoes, C.; Koutsoyiannis, D.; Elias, P.; Mamassis, N. Estimation of actual evapotranspiration by remote sensing: Application in Thessaly Plain, Greece. Sensors 2008, 8, 3586–3600. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-L.; Wang, H.; Li, N. Keriya County Annals, 1st ed.; Xinjiang People’s Press: Urumqi, China, 2006; pp. 142–148, 162–164, 173–181, 300–313. ISBN 7-228-09260-0. (In Chinese) [Google Scholar]
- Huntington, H.P. Using Traditional Ecological Knowledge in Science: Methods and Applications. Ecol. Appl. 2000, 10, 1270–1274. [Google Scholar] [CrossRef]
- Seydehmet, J.; Lv, G.H.; Nurmemet, I.; Aishan, T.; Abliz, A.; Sawut, M.; Abliz, A.; Eziz, M. Model prediction of secondary soil salinization in the Keriya Oasis, Northwest China. Sustainability 2018, 10, 656. [Google Scholar] [CrossRef]
- Weck, M.; Klocke, F.; Schell, H.; Rüenauver, E. Evaluating alternative production cycles using the extended fuzzy AHP method. Eur. J. Oper. Res. 1997, 100, 351–366. [Google Scholar] [CrossRef]
- Forsythe, K.W.; Marvin, C.H.; Valancius, C.J.; Watt, J.P.; Aversa, J.M.; Swales, S.J.; Jakubek, D.J.; Shaker, R.R. Geovisualization of mercury contamination in Lake St. Clair Sediments. J. Mar. Sci. Eng. 2016, 4, 19. [Google Scholar] [CrossRef]
- Fan, Z.; Ma, Y.; Zhang, H.; Wang, R.; Zhao, Y.; Zhou, H. Research of eco-water table and rational depth of groundwater of Tarim River Drainage Basin. Arid Land Geogr. 2004, 27, 8–13. (In Chinese) [Google Scholar]
- Carter, B.T.G.; Nielsen, E.A. Exploring ecological changes in Cook Inlet beluga whale habitat though traditional and local ecological knowledge of contributing factors for population decline. Mar. Policy 2011, 35, 299–308. [Google Scholar] [CrossRef]
- Liedloff, A.C.; Woodward, E.L.; Harrington, G.A.; Jackson, S. Integrating indigenous ecological and scientific hydro-geological knowledge using a Bayesian Network in the context of water resource development. J. Hydrol. 2013, 499, 177–187. [Google Scholar] [CrossRef]
- Benyamini, Y.; Mirlas, V.; Marish, S.; Gottesman, M.; Fizik, E.; Agassi, M. A survey of soil salinity and groundwater level control systems in irrigated fields in the Jezre’el Valley, Israel. Agric. Water Manag. 2005, 76, 181–194. [Google Scholar] [CrossRef]
- Taylor, P.; Carr, E.R.; Wingard, P.M.; Yorty, S.C.; Thompson, M.C.; Jensen, N.K.; Roberson, J. Applying DPSIR to sustainable development. Int. J. Sustain. Dev. World Ecol. 2009, 14, 543–555. [Google Scholar] [CrossRef]
PSR | Parameters and Symbols | Explanations | Sources | Data Types |
---|---|---|---|---|
Pressures (Natural) | Evapotranspiration (A0) | The actual evapotranspiration (ΕΤ) was calculated based on Granger’s equation [56]; the common equation can be written as below: In the equations, ET is the daily actual evapotranspiration (mm day−1), ∆ is the gradient of vapor pressure curve (kP °C−1), Rn is the net radiation at the crop surface (ΜJ m−2 day−1), G is the soil heat flux density (ΜJ m−2 d−1), λ is the latent heat of vaporization (MJ kg−1), γ is the psychrometric coefficient (kP °C−1), Εα is the drying power of the air (mm d−1), g is the relative evaporation (–) | This study | Combination of mathematical model and Landsat-8 ETM+ * |
Relative elevation (A1) | Height above sea level (m) | This study | GTOP30/DEM * | |
Distance to drainage (A2) | Strait distance to River course (drainage is one of rivers’ dual functions due to seasonality) or natural drainage ditches (m) | This study | Landsat-8 ETM+ * | |
Flash flood impact (A3) | Flash flooding (termed “Sel” in local) usually caused by heavy rain in the mountains, is always unexpected, fast-moving and destructive. Generally, it creates a natural powerful drainage at a relatively higher area by eroding the earth surface. It leads to a decrease of land slope by bringing mud sedimentation to the low areas | This study | Stakeholder’s opinion | |
Pressures (Human) | Irrigation area (A4) | The cultivated area is irrigated frequently, reducing the salt by salt leaching and natural area | [22], This study | Stakeholder’s opinion, Landsat-8 ETM+ * |
Ratio of farmland to natural area (A5) | The ratio of total farmland area of each village to its total area except desert area (%) | [57] | Statistical data, expert’s opinion | |
Neighbor village impact (A6) | A village in the Oasis subject to the influences of its neighbor due to the catchment slopes from south to north. More farmland at higher elevation causes higher risk to its lower neighbor | This study | Stakeholder’s opinion | |
Aquiculture area (A7) | Fish pond area of each village (ha) | [57] | Statistical data | |
Distance to aquiculture area (A8) | Strait distance to the center of the fish pond or water reservoir (m) | This study | Landsat-8 ETM+ * | |
Ratio of reused irrigation water (A9) | Irrigation time of reused water to not reused irrigation water (“Kara water/Aq water” in local term) (%), Kara water saltier than Aq water | This study | Stakeholder’s opinion | |
States | Ratio of salt-affected farmland (A10) | Percentage of salt-affected farmland to fertile farmland (%). Salt-affected farmland was determined by field symptoms: The field is relatively wet but crops wither easily; and the field has a shallow groundwater table but requires regular irrigation. At maximum impact, fields would die entirely if they lost only one year of irrigation chance | This study | Stakeholder’s opinion |
Ground water depth (A11) | Vertical distance from the soil surface to ground water table (m) | [2], This study | Field measured data | |
Ground water salinity (A12) | Electric conductivity of groundwater (mS/cm) | [2], This study | Field measured data | |
Groundwater fluctuation (A13) | Annual difference between the maximum value and minimum value (m/year) | [2], This study | Field measured data | |
Total soluble salt in subsoil (A14) | Average total soluble salt content in the subsoil layer (0.4–0.6 m, 0.6–0.8 m, 0.8–1.0 m, depth) (g/Kg) | This study | Field and Lab. measured data | |
Responses | NDVI (A15) | Normalized difference vegetation index, NDVI = (NIR − R)/(NIR + R), NIR is Near infrared band, R is red band | This study | Landsat-8 ETM+ * |
Density of agro-population (A16) | Village labor number to total village arable area (person/per ha farmland) | [57] | Statistical data | |
Total soluble salt in tap soil (AA) | Average total soluble salt content in the topsoil layer (0.0–0.1 m, 0.1–0.2 m, 0.2–0.4 m, depth) (g/Kg) | This study | Lab. measured data |
Variable Symbols | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A0 | 1.00 | ||||||||||||||||
A1 | 2.00 | 1.00 | |||||||||||||||
A2 | 0.50 | 0.43 | 1.00 | ||||||||||||||
A3 | 0.14 | 0.20 | 0.67 | 1.00 | |||||||||||||
A4 | 0.60 | 0.33 | 0.63 | 1.75 | 1.00 | ||||||||||||
A5 | 0.17 | 0.67 | 0.80 | 1.13 | 0.33 | 1.00 | |||||||||||
A6 | 0.20 | 0.25 | 0.40 | 1.25 | 0.20 | 0.40 | 1.00 | ||||||||||
A7 | 0.50 | 1.50 | 1.33 | 1.17 | 1.14 | 1.13 | 1.33 | 1.00 | |||||||||
A8 | 0.17 | 0.90 | 0.83 | 1.40 | 0.67 | 1.40 | 2.00 | 0.50 | 1.00 | ||||||||
A9 | 0.13 | 0.67 | 0.67 | 0.80 | 0.14 | 0.33 | 4.00 | 0.33 | 1.33 | 1.00 | |||||||
A10 | 0.17 | 0.33 | 1.10 | 0.67 | 0.17 | 0.25 | 4.00 | 0.33 | 0.60 | 0.25 | 1.00 | ||||||
A11 | 3.50 | 3.00 | 5.50 | 6.50 | 1.50 | 4.50 | 4.00 | 1.50 | 3.00 | 6.00 | 7.00 | 1.00 | |||||
A12 | 4.00 | 3.50 | 6.00 | 7.00 | 2.00 | 6.00 | 4.50 | 2.00 | 3.33 | 6.50 | 7.50 | 1.33 | 1.00 | ||||
A13 | 2.33 | 2.00 | 4.00 | 5.00 | 1.00 | 4.00 | 2.50 | 1.00 | 2.00 | 4.00 | 5.00 | 0.78 | 0.43 | 1.00 | |||
A14 | 3.00 | 2.67 | 5.00 | 6.00 | 1.13 | 4.33 | 3.33 | 1.25 | 2.33 | 5.00 | 6.00 | 0.88 | 0.60 | 0.80 | 1.00 | ||
A15 | 0.13 | 0.75 | 0.50 | 2.00 | 0.89 | 0.88 | 3.00 | 0.20 | 0.33 | 1.00 | 0.67 | 0.13 | 0.14 | 0.17 | 0.14 | 1.00 | |
A16 | 0.20 | 2.00 | 0.33 | 0.33 | 0.50 | 2.00 | 0.67 | 0.17 | 0.25 | 0.33 | 4.00 | 0.20 | 0.25 | 0.33 | 0.50 | 4.00 | 1.00 |
Variable Symbols | AHP Weights | MDM Weights | rij | CRI Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 | ||||
A0 | 0.0840 | 0.0582 | 0.8402 | 0.0489 | 0.0518 | 0.0561 | 0.0582 | 0.0603 | 0.0645 | 0.0706 |
A1 | 0.0519 | 0.0532 | 0.7718 | 0.0411 | 0.0408 | 0.0406 | 0.0405 | 0.0404 | 0.0402 | 0.0401 |
A2 | 0.0462 | 0.0430 | 0.6961 | 0.0299 | 0.0303 | 0.0308 | 0.0310 | 0.0312 | 0.0317 | 0.0322 |
A3 | 0.0201 | 0.0602 | 0.6759 | 0.0407 | 0.0415 | 0.0351 | 0.0319 | 0.0288 | 0.0224 | 0.0136 |
A4 | 0.0527 | 0.0561 | 0.8193 | 0.0459 | 0.0453 | 0.0448 | 0.0445 | 0.0442 | 0.0437 | 0.0432 |
A5 | 0.0162 | 0.0625 | 0.7559 | 0.0472 | 0.0390 | 0.0322 | 0.0288 | 0.0254 | 0.0186 | 0.0122 |
A6 | 0.0155 | 0.0623 | 0.7267 | 0.0452 | 0.0379 | 0.0312 | 0.0278 | 0.0245 | 0.0178 | 0.0113 |
A7 | 0.0603 | 0.0727 | 0.8373 | 0.0609 | 0.0587 | 0.0566 | 0.0556 | 0.0546 | 0.0525 | 0.0505 |
A8 | 0.0348 | 0.0426 | 0.7022 | 0.0299 | 0.0288 | 0.0277 | 0.0271 | 0.0266 | 0.0255 | 0.0244 |
A9 | 0.0196 | 0.0807 | 0.7703 | 0.0621 | 0.0494 | 0.0406 | 0.0362 | 0.0318 | 0.0229 | 0.2252 |
A10 | 0.0197 | 0.0511 | 0.8294 | 0.0424 | 0.0351 | 0.0302 | 0.0278 | 0.0253 | 0.0204 | 0.0164 |
A11 | 0.1453 | 0.0653 | 0.6850 | 0.0447 | 0.0558 | 0.0668 | 0.0723 | 0.0778 | 0.0888 | 0.0995 |
A12 | 0.1708 | 0.0910 | 0.8177 | 0.0744 | 0.0891 | 0.1024 | 0.1091 | 0.1157 | 0.1290 | 0.1396 |
A13 | 0.0831 | 0.0453 | 0.7137 | 0.0323 | 0.0377 | 0.0431 | 0.0458 | 0.0485 | 0.0538 | 0.0593 |
A14 | 0.1365 | 0.0461 | 0.8713 | 0.0402 | 0.0601 | 0.0770 | 0.0855 | 0.0940 | 0.1109 | 0.1189 |
A15 | 0.0191 | 0.0474 | 0.7170 | 0.0340 | 0.0299 | 0.0259 | 0.0238 | 0.0218 | 0.0178 | 0.0137 |
A16 | 0.0242 | 0.0624 | 0.7992 | 0.0498 | 0.0437 | 0.0376 | 0.0345 | 0.0315 | 0.0254 | 0.0193 |
Total | 1 | 1 | - | - | - | - | - | - | - | - |
Issue | Scale | Data Types | Index | Scenario Test | Approach | Reference |
---|---|---|---|---|---|---|
Secondary soil salinization risk assessing and mapping | Keriya Oasis, NW China | Scientific, traditional | 17 | Yes | DPSIR, rij, AHP, MDM | This study |
Assessing secondary soil salinization risk | Yinchuan Plain, NW China | Scientific | 14 | Yes | DPSIR, rij, AHP | [8] |
Impact of land uses on land salinization | Yellow River Delta, NW China | Scientific | 11 | Yes | Spatial statistical model | [28] |
Monitoring soil salinization | Keriya Oasis, NW China | Scientific | 6 | Yes | Passive Reflective and Active Microwave Remote Sensing Data | [1] |
Salinity on soil salt dynamics | Keriya Oasis, NW China | Scientific | 2 | - | Decision tree, Statistical analyses | [2] |
Salt assessment under different land use type | Keriya Oasis, NW China | Scientific | 11 | - | Statistical analyses | [23] |
Soil salinity related to physical soil characteristics and irrigation management | Mediterranean irrigation districts | Scientific | 17 | - | Electromagnetic induction techniques | [9] |
Prediction of soil salinity risk | Canadian prairies are | Scientific | 5 | - | Concept of accumulation, transition and dissipation zone | [64] |
Ecotone soil salinization causes | Fubei Oasis, NW China | Scientific | 1 | - | Mathematical equation | [52] |
Environmental factors of soil salinity | Khorezm, Uzbekistan | Scientific | 11 | - | Geo-statistical Analysis | [13] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seydehmet, J.; Lv, G.-H.; Abliz, A.; Shi, Q.-D.; Abliz, A.; Turup, A. Irrigation Salinity Risk Assessment and Mapping in Arid Oasis, Northwest China. Water 2018, 10, 966. https://doi.org/10.3390/w10070966
Seydehmet J, Lv G-H, Abliz A, Shi Q-D, Abliz A, Turup A. Irrigation Salinity Risk Assessment and Mapping in Arid Oasis, Northwest China. Water. 2018; 10(7):966. https://doi.org/10.3390/w10070966
Chicago/Turabian StyleSeydehmet, Jumeniyaz, Guang-Hui Lv, Abdugheni Abliz, Qing-Dong Shi, Abdulla Abliz, and Abdusalam Turup. 2018. "Irrigation Salinity Risk Assessment and Mapping in Arid Oasis, Northwest China" Water 10, no. 7: 966. https://doi.org/10.3390/w10070966
APA StyleSeydehmet, J., Lv, G. -H., Abliz, A., Shi, Q. -D., Abliz, A., & Turup, A. (2018). Irrigation Salinity Risk Assessment and Mapping in Arid Oasis, Northwest China. Water, 10(7), 966. https://doi.org/10.3390/w10070966