Hydraulic Conductivity Characteristics of Desert Plant Organs: Coping with Drought Tolerance Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Species, and Sampling Method
2.2. Measurement of Hydraulic Conductivity and Functional Traits
2.2.1. Measurement of Leaf and Stem Hydraulic Conductivity
2.2.2. Measurement of Root System Hydraulic Conductivity
2.3. Statistics Analysis
3. Results
3.1. Characteristics of Root and Leaf Traits of Three Desert Plants
3.2. Characteristics of Hydraulic Conductivity in Different Organs of Desert Plants
3.3. Correlation of Hydraulic Conductivity with Root and Leaf Traits in Desert Plants
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noy-Meir, I. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Steudle, E. The cohesion-tension mechanism and the acquisition of water by plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 53, 847–875. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; Tan, H.J.; He, M.Z.; Wang, X.P.; Li, X.J. Patterns of shrub species richness and abundance in relation to environmental factors on the Alxa Plateau: Prerequisites for conserving shrub diversity in extreme arid desert regions. Sci China-Earth Sci. 2009, 52, 669–680. [Google Scholar] [CrossRef]
- Martre, P.; North, G.B.; Nobel, P.S. Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiol. 2001, 126, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Q.; Zhang, S.Q.; Liu, X.F.; Mu, Z.X. Relationship between root s hydraulic conductivity and root anatomy of winter wheat (Triticum aestivum). J. Northwest A F Univ. 2007, 35, 160–164. [Google Scholar]
- Sinclair, T.R.; Zwieniecki, M.A.; Holbrook, N.M. Low leaf hydraulic conductance associated with drought tolerance in soybean. Physiol. Plant. 2010, 132, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.B.; Li, J.Y.; Jiang, J.P. Effect of drought stress on hydraulic architecture characteristics of Pinus tabulaeformis and Platycladus orientalis seedlings. J. Beijing For. Univ. 2002, 24, 45–49. [Google Scholar]
- Mu, Z.X.; Zhang, S.Q.; Liang, A.H.; Liang, Z.S. Relationship between maize root hydraulic conductivity and drought resistance. Acta Agron. Sin. 2005, 31, 203–208. [Google Scholar]
- Li, G.H.; Zhang, K.; Liu, F.Z.; Liu, D.D.; Wan, Y.S. Morphological and physiological traits of leaf in different drought resistant peanut cultivars. Sci. Agric. Sin. 2014, 47, 644–654. [Google Scholar]
- Fernández, R.J.; Wang, M.; Reynolds, J.F. Do morphological changes mediate plant responses to water stress? A steady-state experiment with two C4 grasses. New Phytol. 2010, 155, 79–88. [Google Scholar]
- He, W.M.; Zhang, X.S. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China. J Arid Environ. 2003, 53, 307–316. [Google Scholar] [CrossRef]
- Zheng, S.X.; Shangguan, Z.P. Photosynthetic characteristics and their relationships with leaf nitrogen content and leaf mass per area in different plant functional types. Acta Ecol. Sin. 2007, 27, 171–181. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M. The worldwide leaf economics spectrum. Nature. 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painawadee, M.; Jogloy, S.; Kesmala, T.; Akkasaeng, C.; Patanothai, A. Identification of Traits Related to Drought Resistance in Peanut (Arachis hypogaea L.). Asian J. Plant Sci. 2009, 8, 120–128. [Google Scholar]
- Kulkarni, M.; Schneider, B.; Raveh, E. Leaf anatomical characteristics and physiological responses to short-term drought in Ziziphus mauritiana (Lamk.). Sci. Hortic Amst. 2010, 124, 316–322. [Google Scholar] [CrossRef]
- Singh, S.K.; Reddy, K.R. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J Photochem. Photobiol. B. Biol. 2011, 105, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Eissenstat, D.M. On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks. New Phytol. 1991, 118, 63–68. [Google Scholar] [CrossRef]
- Shan, L.S. Studies on Morphology and Function of Root of Typical Desert Plant and Its Drought-Resistant Physiology Characteristics on Northwest China. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, June 2013. [Google Scholar]
- Cortina, J.; Green, J.J.; Baddeley, J.A.; Watson, C.A. Root morphology and water transport of Pistacia lentiscus seedlings under contrasting water supply: A test of the pipe stem theory. Environ. Exp. Bot. 2008, 62, 343–350. [Google Scholar] [CrossRef]
- Running, S.W. Field estimates of root and xylem resistance in Pinus contorta using root excision. J. Exp. Bot. 1980, 31, 555–569. [Google Scholar] [CrossRef]
- Su, P.X.; Liu, X.M.; Zhang, L.X.; Zhao, A.F.; Li, W.R.; Chen, H.S. Comparison of δ13C values and gas exchange of assimilating shoots of desert plants Haloxylon ammodendron and Calligonum mongolicum with other plants. Isr. J. Plant. Sci. 2004, 52, 87–97. [Google Scholar] [CrossRef]
- Tyree, M.T.; Sinclair B, Lu. P.; Granier, A. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter. Ann. For. Sci. 1993, 50, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Tyree, M.T.; Patiño, S.; Bennink, J.; Alexander, J. Dynamic measurements of roots hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J. Exp. Bot. 1995, 46, 83–94. [Google Scholar] [CrossRef]
- Wilcox, C.S.; Ferguson, J.W.; Fernandez, G.C.J.; Nowak, R.S. Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite. J. Arid Environ. 2004, 56, 129–148. [Google Scholar] [CrossRef]
- Turner, N.C. Further progress in crop water relations. Adv. Agron. 1997, 58, 293–338. [Google Scholar]
- Zhang, H.N.; Su, P.X.; Li, S.J.; Zhou, Z.J.; Xie, T.T.; Zhao, Q.F. Indicative effect of the anatomical structure of plant photosynthetic organ on WUE in desert region. Acta Agron. Sin. 2013, 33, 4909–4918. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot-London. 2002, 89, 183–189. [Google Scholar] [CrossRef]
- Rieger, M.; Litvin, P. Root system hydraulic conductivity in species with contrasting root anatomy. J. Exp. Bot. 1999, 50, 201–209. [Google Scholar] [CrossRef] [Green Version]
Plant Species | Leaf | Fine Root | ||
---|---|---|---|---|
SLW (g cm−2) | SLA (cm2 g−1) | SRL (cm g−1) | SRSA (cm2 g−1) | |
R. soongorica | 0.010 ± 0.00a | 97.35 ± 3.34b | 121.55 ± 16.31c | 51.04 ± 3.65c |
N. sphaerocarpa | 0.007 ± 0.00a | 137.02 ± 7.33a | 364.15 ± 60.28a | 138.13 ± 25.44a |
S. regelii | 0.007 ± 0.00a | 142.03 ± 9.00a | 239.23 ± 40.84b | 74.82 ± 12.74b |
Plant Traits | KLW | KSLA | KSLW | SLW | SLA | KRW | RD | RL | RSA | RW | SRL |
---|---|---|---|---|---|---|---|---|---|---|---|
KSLA | 0.935 ** | ||||||||||
KSLW | 0.950 ** | 0.988 ** | |||||||||
SLW | −0.444 | -0.182 | −0.313 | ||||||||
SLA | 0.391 | 0.133 | 0.269 | −0.991 ** | |||||||
KRW | −0.342 | −0.516 | −0.528 | −0.097 | 0.054 | ||||||
RD | −0.375 | −0.458 | −0.436 | −0.059 | 0.005 | 0.334 | |||||
RL | 0.247 | 0.024 | 0.020 | −0.234 | 0.153 | 0.280 | 0.597 | ||||
RSA | −0.136 | −0.292 | −0.294 | −0.07 | −0.001 | 0.341 | 0.892 ** | 0.885 ** | |||
RW | −0.239 | −0.05 | −0.139 | 0.733 * | −0.738 * | −0.398 | 0.287 | 0.173 | 0.327 | ||
SRL | 0.156 | −0.14 | −0.057 | −0.735 * | 0.715* | 0.582 | 0.222 | 0.382 | 0.279 | −0.776 * | |
SRSA | −0.023 | −0.292 | −0.230 | −0.582 | 0.559 | 0.727 * | 0.34 | 0.366 | 0.35 | −0.696 * | 0.966 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Su, P.; Zhang, H.; Zhou, Z.; Shi, R.; Gou, W. Hydraulic Conductivity Characteristics of Desert Plant Organs: Coping with Drought Tolerance Strategy. Water 2018, 10, 1036. https://doi.org/10.3390/w10081036
Li S, Su P, Zhang H, Zhou Z, Shi R, Gou W. Hydraulic Conductivity Characteristics of Desert Plant Organs: Coping with Drought Tolerance Strategy. Water. 2018; 10(8):1036. https://doi.org/10.3390/w10081036
Chicago/Turabian StyleLi, Shanjia, Peixi Su, Haina Zhang, Zijuan Zhou, Rui Shi, and Wei Gou. 2018. "Hydraulic Conductivity Characteristics of Desert Plant Organs: Coping with Drought Tolerance Strategy" Water 10, no. 8: 1036. https://doi.org/10.3390/w10081036
APA StyleLi, S., Su, P., Zhang, H., Zhou, Z., Shi, R., & Gou, W. (2018). Hydraulic Conductivity Characteristics of Desert Plant Organs: Coping with Drought Tolerance Strategy. Water, 10(8), 1036. https://doi.org/10.3390/w10081036