Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analytical Methods
2.4. Two-End-Member Mixing Model
2.5. Statistical Analysis
3. Results
3.1. Environmental Parameters
3.2. Spatial Variations of Dissolved Inorganic Nitrogen, Silicate, and Nutrient Ratios
3.3. Abundance and Variations in Different P Species
3.4. Partitioning of P between Dissolved and Particulate Phases
4. Discussion
4.1. Abundance and Partitioning of P Species
4.2. Factors Controlling and Source of the Different P Species
4.3. Effect of the Dafengjiang River Discharge on P Dynamics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
P | Phosphorus |
TP | Total phosphorus |
TDP | Total dissolved phosphorus |
DIP | Dissolved inorganic phosphorus |
DOP | Dissolved organic phosphorus |
TPP | Total particulate phosphorus |
DSi | Dissolved silicate |
PCA | Principal component analysis |
DRE | Dafengjiang River estuary |
DIN | Dissolved inorganic nitrogen |
NO3− | Nitrate |
NO2− | Nitrite |
NH4+ | Ammonium |
T | Temperature |
S | Salinity |
DO | Dissolved oxygen |
Chl-a | Chlorophyll a |
References
- Slomp, C.P. Phosphorus cycling in the estuarine and coastal zones: Sources, sinks, and transformations. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Academic Press: Waltham, MA, USA, 2011; Volume 5, pp. 201–229. ISBN 9780080878850. [Google Scholar]
- Yang, B.; Song, G.D.; Liu, S.M.; Jin, J. Phosphorus recycling and burial in core sediments of the East China Sea. Mar. Chem. 2017, 192, 59–72. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.M.; Zhang, G.L. Geochemical characteristics of phosphorus in surface sediments from the continental shelf region of the northern South China Sea. Mar. Chem. 2018, 198, 44–55. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.M.; Wu, Y.; Zhang, J. Phosphorus speciation and availability in sediments off the eastern coast of Hainan Island, South China Sea. Cont. Shelf Res. 2016, 118, 111–127. [Google Scholar] [CrossRef]
- Bastami, K.D.; Neyestani, M.R.; Raeisi, H.; Shafeian, E.; Baniamam, M.; Shirzadi, A.; Esmaeilzadeh, M.; Mozaffari, S.; Shahrokhi, B. Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea. Mar. Pollut. Bull. 2018, 126, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Guo, L.D. Dynamic changes in the abundance and chemical speciation of dissolved and particulate phosphorus across the river-lake interface in southwest Lake Michigan. Limnol. Oceanogr. 2016, 61, 771–789. [Google Scholar] [CrossRef]
- Li, R.H.; Xu, J.; Li, X.F.; Shi, Z.; Harrison, P.J. Spatiotemporal variability in phosphorus species in the Pearl River Estuary: Influence of the river discharge. Sci. Rep. 2017, 7, 13649. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Guo, L.D.; Chen, M.; Cai, Y.H. Distribution, partitioning and mixing behavior of phosphorus species in the Jiulong River estuary. Mar. Chem. 2013, 157, 93–105. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, C.W.; Bong, C.W.; Affendi, Y.A.; Hii, Y.S.; Kudo, I. Distributions of particulate and dissolved phosphorus in aquatic habitats of Peninsular Malaysia. Mar. Pollut. Bull. 2018, 128, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Hecky, R.E.; Kilham, P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 1988, 33, 796–822. [Google Scholar] [CrossRef]
- Vilmin, L.; Aissa-Grouz, N.; Garnier, J.; Billen, G.; Mouchel, J.M.; Poulin, M.; Flipo, N. Impact of hydro-sedimentary processes on the dynamics of soluble reactive phosphorus in the Seine River. Biogeochemistry 2015, 122, 229–251. [Google Scholar] [CrossRef]
- Boyer, L.A.; Plath, K.; Zeitlinger, J.; Brambrink, T.; Medeiros, L.A.; Lee, T.I.; Levine, S.S.; Wernig, M.; Tajonar, A.; Ray, M.K.; et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006, 441, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Zhang, J.Z. Spatial variation in sediment-water exchange of phosphorus in Florida Bay: AMP as a model organic compound. Environ. Sci. Technol. 2010, 44, 7790–7795. [Google Scholar] [CrossRef] [PubMed]
- Ruttenberg, K.C.; Sulak, D.J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr) oxides in seawater. Geochim. Cosmochim. Acta 2011, 75, 4095–4112. [Google Scholar] [CrossRef]
- Nausch, M.; Nausch, G. Dissolved phosphorus in the Baltic Sea–Occurrence and relevance. J. Mar. Syst. 2011, 87, 37–46. [Google Scholar] [CrossRef]
- Yoshimura, T.; Nishioka, J.; Ogawa, H.; Kuma, K.; Saito, H.; Tsuda, A. Dissolved organic phosphorus production and decomposition during open ocean diatom blooms in the subarctic Pacific. Mar. Chem. 2014, 165, 46–54. [Google Scholar] [CrossRef]
- Huang, B.Q.; Ou, L.J.; Wang, X.L.; Huo, W.Y.; Li, R.X.; Hong, H.S.; Zhu, M.Y.; Qi, Y.Z. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquat. Microb. Ecol. 2007, 49, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Boge, G.; Lespilette, M.; Jamet, D.; Jamet, J.L. Role of sea water DIP and DOP in controlling bulk alkaline phosphatase activity in the N. W. Mediterranean Sea (Toulon, France). Mar. Pollut. Bull. 2012, 64, 1986–1996. [Google Scholar] [CrossRef] [PubMed]
- Suzumura, M.; Hashihama, F.; Yamada, N.; Kinouchi, S. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the western North Pacific Ocean. Front. Microbiol. 2012, 3, 99. [Google Scholar] [CrossRef] [PubMed]
- Paytan, A.; McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 2007, 107, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Guo, L.D.; Chen, M.; Tong, J.L.; Lin, F. The distribution and chemical speciation of dissolved and particulate phosphorus in the Bering Sea and the Chukchi–Beaufort Seas. Deep Sea Res. Part II 2012, 81, 79–94. [Google Scholar] [CrossRef]
- Conley, D.J.; Smith, W.M.; Cornwell, J.C.; Fisher, T.R. Transformation of particle-bound phosphorus at the land-sea interface. Estuar. Coast. Shelf Sci. 1995, 40, 161–176. [Google Scholar] [CrossRef]
- Jordan, T.E.; Cornwell, J.C.; Boynton, W.R.; Anderson, J.T. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: The iron conveyer belt. Limnol. Oceanogr. 2008, 53, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Slomp, C.P.; Van der Gaast, S.J.; Van Raaphorst, W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 1996, 52, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Klump, J.V.; Guo, L.D. Variations in chemical speciation and reactivity of phosphorus between suspended-particles and surface-sediments in seasonal hypoxia-influenced Green Bay. J. Great Lakes Res. 2018. [Google Scholar] [CrossRef]
- Meng, J.; Yao, P.; Yu, Z.G.; Bianchi, T.S.; Zhao, B.; Pan, H.H.; Li, D. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf. Estuar. Coast. Shelf Sci. 2014, 144, 27–38. [Google Scholar] [CrossRef]
- Tang, D.L.; Kester, D.R.; Ni, I.H.; Qi, Y.Z.; Kawamura, H. In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998. Harmful Algae 2003, 2, 89–99. [Google Scholar] [CrossRef]
- Chai, C.; Yu, Z.M.; Song, X.X.; Cao, X.H. The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia 2006, 563, 313–328. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Zhang, J.; Wu, Y.; Zhang, Y.Y.; Lin, J.; Liu, S.M. Hypoxia off the Changjiang (Yangtze River) Estuary: oxygen depletion and organic matter decomposition. Mar. Chem. 2011, 125, 108–116. [Google Scholar] [CrossRef]
- Yang, B.; Fang, H.Y.; Zhong, Q.P.; Zhang, C.X.; Li, S.P. Distribution characteristics of nutrients and eutrophication assessment in summer in Qinzhou Bay. Mar. Sci. Bull. 2012, 31, 640–645. (In Chinese) [Google Scholar]
- Lai, J.X.; Jiang, F.J.; Ke, K.; Xu, M.B.; Lei, F.; Chen, B. Nutrients distribution and trophic status assessment in the northern Beibu Gulf, China. Chin. J. Oceanol. Limnol. 2014, 32, 1128–1144. [Google Scholar] [CrossRef]
- Yang, B.; Zhong, Q.P.; Zhang, C.X.; Lu, D.L.; Liang, Y.R.; Li, S.P. Spatio-temporal variations of chlorophyll a and primary productivity and its influence factors in Qinzhou Bay. Acta Sci. Circums. 2015, 35, 1333–1340. (In Chinese) [Google Scholar]
- Li, P.Y.; Xue, R.; Wang, Y.H.; Zhang, R.J.; Zhang, G. Influence of anthropogenic activities on PAHs in sediments in a significant gulf of low-latitude developing regions, the Beibu Gulf, South China Sea: distribution, sources, inventory and probability risk. Mar. Pollut. Bull. 2015, 90, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.F.; Huang, H.J.; Yan, L.W.; Bi, H.B.; Zhang, Z.H. Distribution and diffusion of suspended matters based on remote sensing in the Dafengjiang Estuary. Trans. Oceanol. Limnol. 2005, 27, 14–20. (In Chinese) [Google Scholar]
- Committee of Annals of Chinese Estuaries. Annals of Chinese Estuaries; Ocean Press: Beijing, China, 1998; Volume 14. (In Chinese) [Google Scholar]
- Xu, S.Q.; Li, J.M.; Lu, S.B.; Zhong, Q.P.; Chen, M.E. Current situation and sustainable development of mangrove resources in the Guangxi Beibu Gulf. Bull. Biol. 2010, 45, 11–14. (In Chinese) [Google Scholar]
- Lagos, J.E.; Jiang, J.; Sindelar, S. Peoples Republic of China Sugar Annual 2011; Required Report–Public Distribution CH11019; Global Agricultural Information Network (GAIN): Beijing, China, 2011. [Google Scholar]
- Bai, J.; Gan, S. Eucalyptus plantations in China. In Reports Submitted to the Regional Expert Consultation on Eucalyptus. FAO Regional Office for Asia and the Pacific (RAP): Bangkok, Thailand, 1996. [Google Scholar]
- Herbeck, L.S.; Sollich, M.; Unger, D.; Holmer, M.; Jennerjahn, T.C. Impact of pond aquaculture effluents on seagrass performance in NE Hainan, tropical China. Mar. Pollut. Bull. 2014, 85, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Lai, D.Y.; Jin, B.; Bastviken, D.; Tan, L.; Tong, C. Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: Concentrations, fluxes and environmental loads. Sci. Total Environ. 2017, 603, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Funge-Smith, S.J.; Briggs, M.R. Nutrient budgets in intensive shrimp ponds: Implications for sustainability. Aquaculture 1998, 164, 117–133. [Google Scholar] [CrossRef]
- Hansen, H.P.; Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis; Grasshoff, K., Kremling, K., Ehrhardt, M., Eds.; WILEY-VCH: Weinheim, Germany, 1999; pp. 159–288. ISBN 3-527-29589-5. [Google Scholar]
- Liu, S.M.; Zhang, J.; Chen, H.T.; Wu, Y.; Xiong, H.; Zhang, Z.F. Nutrients in the Changjiang and its tributaries. Biogeochemistry 2003, 62, 1–18. [Google Scholar] [CrossRef]
- Cai, Y.H.; Guo, L.D. Abundance and variation of colloidal organic phosphorus in riverine, estuarine, and coastal waters in the northern Gulf of Mexico. Limnol. Oceanogr. 2009, 54, 1393–1402. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Cao, L.; Liu, S.M.; Zhang, G.S. Biogeochemistry of bulk organic matter and biogenic elements in surface sediments of the Yangtze River Estuary and adjacent sea. Mar. Pollut. Bull. 2015, 96, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Aspila, K.I.; Agemian, H.; Chau, A.S.Y. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 1976, 101, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. A manual for Chemical and Biological Methods for Seawater Analysis. Pergamon Press: Oxford, UK, 1984; p. 173. ISBN 0-08-030288-2. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Gopinath, A.; Joseph, N.; Sujatha, C.H.; Nair, S.M. Forms of Nitrogen (NO3-N; NO2-N and NH2CONH2-N) and their relations to A.O.U in the Indian coastal waters of Arabian Sea. Chem. Ecol. 2002, 18, 233–244. [Google Scholar] [CrossRef]
- Durga Rao, G.; Kanuri, V.V.; Kumaraswami, M.; Ezhilarasan, P.; Rao, V.D.; Patra, S.; Dash, S.K.; Peter, M.; Rao, V.R.; Ramu, K. Dissolved nutrient dynamics along the southwest coastal waters of India during northeast monsoon: A case study. Chem. Ecol. 2017, 33, 229–246. [Google Scholar] [CrossRef]
- Justić, D.; Rabalais, N.N.; Turner, R.E.; Dortch, Q. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci. 1995, 40, 339–356. [Google Scholar] [CrossRef]
- Shim, M.J.; Swarzenski, P.W.; Shiller, A.M. Dissolved and colloidal trace elements in the Mississippi River delta outflow after Hurricanes Katrina and Rita. Cont. Shelf Res. 2012, 42, 1–9. [Google Scholar] [CrossRef]
- Baker, D.B.; Confesor, R.; Ewing, D.E.; Johnson, L.T.; Kramer, J.W.; Merryfield, B.J. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: The importance of bioavailability. J. Great Lakes Res. 2014, 40, 502–517. [Google Scholar] [CrossRef]
- Van der Zee, C.; Roevros, N.; Chou, L. Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Mar. Chem. 2007, 106, 76–91. [Google Scholar] [CrossRef]
- Lin, P.; Chen, M.; Guo, L.D. Speciation and transformation of phosphorus and its mixing behavior in the Bay of St. Louis estuary in the northern Gulf of Mexico. Geochim. Cosmochim. Acta 2012, 87, 283–298. [Google Scholar] [CrossRef]
- Cai, Y.H.; Guo, L.D.; Douglas, T.A.; Whitledge, T.E. Seasonal variations in nutrient concentrations and speciation in the Chena River, Alaska. J. Geophys. Res. Biogeosci. 2008, 113, G030035. [Google Scholar] [CrossRef]
- Guo, L.D.; Zhang, J.Z.; Guéguen, C. Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Glob. Biogeochem. Cycles 2004, 18, GB1038. [Google Scholar] [CrossRef]
- Guo, L.D.; Cai, Y.H.; Belzile, C.; Macdonald, R.W. Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry 2012, 107, 187–206. [Google Scholar] [CrossRef]
- Ho, A.Y.; Xu, J.; Yin, K.D.; Jiang, Y.L.; Yuan, X.C.; He, L.; Anderson, D.M.; Lee, J.H.W.; Harrison, P.J. Phytoplankton biomass and production in subtropical Hong Kong waters: influence of the Pearl River outflow. Estuar. Coast. 2010, 33, 170–181. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Huang, X.L. Effect of temperature and salinity on phosphate sorption on marine sediments. Environ. Sci. Technol. 2011, 45, 6831–6837. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.S.; Edgington, D.N. Biogeochemical control of phosphorus cycling and primary production in Lake Michigan. Limnol. Oceanogr. 1994, 39, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Lean, D.R.S. Phosphorus dynamics in lake water. Science 1973, 179, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.L.; Chen, B.; Lai, J.X.; Lu, J.C.; Ya, H.Z. Study on the utilization of different phosphorus and alkaline phosphatase characteristics of Phaeoecystis globosa cultivated from Beibu Gulf. Guangxi Sci. 2018, 25, 80–86. (In Chinese) [Google Scholar]
- Yoshimura, T.; Nishioka, J.; Saito, H.; Takeda, S.; Tsuda, A.; Wells, M.L. Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Mar. Chem. 2007, 103, 112–121. [Google Scholar] [CrossRef]
- Li, R.H.; Liu, S.M.; Li, Y.W.; Zhang, G.L.; Ren, J.L.; Zhang, J. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea. Biogeosciences 2014, 11, 481–506. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Purvaja, R.; Ramesh, R. Seasonal and tidal dynamics of nutrients and chlorophyll a in a tropical mangrove estuary, southeast coast of India. Indian J. Mar. Sci. 2008, 37, 132–140. [Google Scholar]
- Burford, M.A.; Rothlisberg, P.C. Factors limiting phytoplankton production in a tropical continental shelf ecosystem. Estuar. Coast. Shelf Sci. 1999, 48, 541–549. [Google Scholar] [CrossRef]
- Lin, P.; Klump, J.V.; Guo, L.D. Dynamics of dissolved and particulate phosphorus influenced by seasonal hypoxia in Green Bay, Lake Michigan. Sci. Total Environ. 2016, 541, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
Sample Locations | Site | Longitude (°E) | Latitude (°N) | Depth (m) | Temperature (°C) | Salinity (psu) | pH | DO (mg L−1) | Chl-a (μg L−1) |
---|---|---|---|---|---|---|---|---|---|
Surface Waters | |||||||||
Lower Dafengjiang River | D1 | 108.87 | 21.74 | 10.0 | 15.71 | 18.38 | 8.12 | 9.12 | 2.52 |
D2 | 108.86 | 21.72 | 14.6 | 15.71 | 19.97 | 8.17 | 9.15 | 4.90 | |
D3 | 108.85 | 21.71 | 10.2 | 15.70 | 21.04 | 8.23 | 9.14 | 2.72 | |
D4 | 108.86 | 21.70 | 8.0 | 15.68 | 21.85 | 8.24 | 9.15 | 5.65 | |
D5 | 108.85 | 21.68 | 7.3 | 15.70 | 22.97 | 8.29 | 9.08 | 6.24 | |
D6 | 108.87 | 21.65 | 6.0 | 15.72 | 24.06 | 8.44 | 9.05 | 2.69 | |
D7 | 108.88 | 21.61 | 11.0 | 15.78 | 24.65 | 8.46 | 9.18 | 3.30 | |
Qinzhou Bay | D8 | 108.94 | 21.57 | 6.6 | 15.75 | 25.86 | 8.57 | 9.82 | 3.09 |
D9 | 108.97 | 21.55 | 6.4 | 16.11 | 25.64 | 8.61 | 9.93 | 4.18 | |
D10 | 108.89 | 21.57 | 6.2 | 15.81 | 25.29 | 8.60 | 9.66 | 6.53 | |
D11 | 108.89 | 21.55 | 6.0 | 16.21 | 25.70 | 8.63 | 9.80 | 2.41 | |
D12 | 108.83 | 21.57 | 5.5 | 15.61 | 26.44 | 8.63 | 9.67 | 6.56 | |
D13 | 108.80 | 21.55 | 6.0 | 16.11 | 26.61 | 8.57 | 9.58 | 6.96 | |
Bottom Waters | |||||||||
Lower Dafengjiang River | D1 | 108.87 | 21.74 | 10.0 | 15.50 | 19.08 | 8.26 | 9.12 | 2.75 |
D2 | 108.86 | 21.72 | 14.6 | 15.51 | 20.91 | 8.27 | 9.11 | 2.93 | |
D3 | 108.85 | 21.71 | 10.2 | 15.61 | 21.79 | 8.28 | 9.17 | 3.51 | |
D4 | 108.86 | 21.70 | 8.0 | 15.51 | 22.88 | 8.29 | 9.16 | 5.07 | |
D5 | 108.85 | 21.68 | 7.3 | 15.51 | 23.90 | 8.38 | 9.01 | 3.13 | |
D6 | 108.87 | 21.65 | 6.0 | 15.60 | 24.48 | 8.45 | 9.04 | 2.52 | |
D7 | 108.88 | 21.61 | 11.0 | 15.61 | 25.68 | 8.50 | 9.13 | 4.39 | |
Qinzhou Bay | D8 | 108.94 | 21.57 | 6.6 | 15.51 | 25.92 | 8.59 | 9.95 | 3.50 |
D9 | 108.97 | 21.55 | 6.4 | 15.71 | 25.97 | 8.64 | 9.99 | 4.24 | |
D10 | 108.89 | 21.57 | 6.2 | 15.62 | 25.82 | 8.61 | 9.76 | 4.55 | |
D11 | 108.89 | 21.55 | 6.0 | 15.90 | 25.92 | 8.65 | 9.90 | 2.41 | |
D12 | 108.83 | 21.57 | 5.5 | 15.53 | 26.47 | 8.64 | 9.71 | 5.60 | |
D13 | 108.80 | 21.55 | 6.0 | 15.78 | 26.81 | 8.58 | 9.38 | 6.28 |
Sample Locations | Site | NO2− (μM) | NO3− (μM) | NH4+ (μM) | DIN (μM) | DSi (μM) | DIP (μM) | DOP (μM) | TDP (μM) | TPP (μM) | TP (μM) |
---|---|---|---|---|---|---|---|---|---|---|---|
Surface Waters | |||||||||||
Lower Dafengjiang River | D1 | 0.90 | 13.10 | 7.73 | 21.73 | 11.75 | 1.59 | 0.91 | 2.50 | 0.22 | 2.72 |
D2 | 1.01 | 14.60 | 6.43 | 22.04 | 11.27 | 1.31 | 0.51 | 1.82 | 0.25 | 2.07 | |
D3 | 1.01 | 11.40 | 6.15 | 18.56 | 10.47 | 1.07 | 0.10 | 1.17 | 0.32 | 1.49 | |
D4 | 1.13 | 11.08 | 6.20 | 18.41 | 8.82 | 1.47 | 0.22 | 1.69 | 0.31 | 2.00 | |
D5 | 0.80 | 8.88 | 5.15 | 14.83 | 5.85 | 0.94 | 0.47 | 1.41 | 0.19 | 1.60 | |
D6 | 0.85 | 6.60 | 4.68 | 12.13 | 3.96 | 0.82 | 0.59 | 1.41 | 0.24 | 1.65 | |
D7 | 0.78 | 5.85 | 3.30 | 9.93 | 4.29 | 0.22 | 0.38 | 0.60 | 0.22 | 0.82 | |
Qinzhou Bay | D8 | 0.53 | 3.10 | 0.70 | 4.33 | 1.78 | 0.02 | 1.02 | 1.04 | 0.19 | 1.23 |
D9 | 0.30 | 2.70 | 0.48 | 3.48 | 1.34 | 0.03 | 0.83 | 0.86 | 0.31 | 1.17 | |
D10 | 0.63 | 3.00 | 0.63 | 4.26 | 1.65 | 0.05 | 0.18 | 0.23 | 0.21 | 0.44 | |
D11 | 0.13 | 1.28 | 1.05 | 2.46 | 1.04 | 0.02 | 0.14 | 0.16 | 0.24 | 0.40 | |
D12 | 0.05 | 0.60 | 0.25 | 0.90 | 0.75 | 0.01 | 0.10 | 0.11 | 0.24 | 0.35 | |
D13 | 0.05 | 1.33 | 0.40 | 1.78 | 0.71 | 0.01 | 0.28 | 0.29 | 0.10 | 0.39 | |
Bottom Waters | |||||||||||
Lower Dafengjiang River | D1 | 1.23 | 12.58 | 7.53 | 21.34 | 8.87 | 1.00 | 1.33 | 2.33 | 0.15 | 2.48 |
D2 | 1.35 | 11.55 | 6.80 | 19.70 | 10.85 | 1.21 | 0.69 | 1.90 | 0.17 | 2.07 | |
D3 | 0.91 | 9.05 | 5.68 | 15.64 | 7.69 | 0.92 | 1.04 | 1.96 | 0.23 | 2.19 | |
D4 | 0.91 | 9.15 | 5.10 | 15.16 | 6.89 | 0.54 | 0.47 | 1.01 | 0.26 | 1.27 | |
D5 | 0.63 | 7.60 | 4.05 | 12.28 | 6.37 | 0.76 | 0.37 | 1.13 | 0.20 | 1.33 | |
D6 | 0.85 | 6.75 | 3.40 | 11.00 | 3.82 | 0.55 | 1.31 | 1.86 | 0.19 | 2.05 | |
D7 | 0.50 | 4.58 | 1.25 | 6.33 | 3.82 | 0.21 | 0.35 | 0.56 | 0.23 | 0.79 | |
Qinzhou Bay | D8 | 0.58 | 2.88 | 1.30 | 4.76 | 1.27 | 0.02 | 0.66 | 0.68 | 0.17 | 0.85 |
D9 | 0.58 | 2.78 | 1.58 | 4.94 | 1.11 | 0.02 | 0.89 | 0.91 | 0.27 | 1.18 | |
D10 | 0.58 | 4.73 | 0.50 | 5.81 | 2.41 | 0.04 | 0.50 | 0.54 | 0.24 | 0.78 | |
D11 | 0.45 | 1.28 | 0.63 | 2.36 | 0.90 | 0.02 | 0.20 | 0.22 | 0.21 | 0.43 | |
D12 | 0.48 | 2.55 | 0.15 | 3.18 | 0.61 | 0.02 | 0.50 | 0.52 | 0.26 | 0.78 | |
D13 | 0.10 | 0.78 | 0.68 | 1.56 | 1.04 | 0.01 | 0.29 | 0.30 | 0.04 | 0.34 |
Water Samples | Relational Expression | R2 |
---|---|---|
Surface | y = −2.8938 + 79.036 (DIN vs. salinity) | 0.92 |
y = −1.5725 + 42.310 (DSi vs. salinity) | 0.96 | |
y = −0.2233 + 5.8797 (DIP vs. salinity) | 0.88 | |
y = −0.2453 + 6.8431 (TDP vs. salinity) | 0.76 | |
Bottom | y = −2.7111 + 75.367 (DIN vs. salinity) | 0.95 |
y = −1.3422 + 36.869 (DSi vs. salinity) | 0.86 | |
y = −0.1698 + 4.5330 (DIP vs. salinity) | 0.85 | |
y = −0.2600 + 7.3839 (TDP vs. salinity) | 0.77 |
Study Area | DIP (μM) | DOP (μM) | TPP (μM) | DIP/TP (%) | DOP/TP (%) | TPP/TP (%) | Reference |
---|---|---|---|---|---|---|---|
Fox River | 0.68–0.98 (0.83 ± 0.22) | 0.52–0.68 (0.60 ± 0.11) | 1.97 | 24 | 18 | 58 | [59] |
Milwaukee River | 0.69–3.05 (1.81 ± 1.19) | 0.11–0.91 (0.54 ± 0.38) | 1.38 | 47 | 16 | 37 | [6] |
Mississippi River | 2.07–4.20 (2.89 ± 1.15) | 0.24–0.45 (0.35 ± 0.15) | 5.26 | 34 | 4 | 62 | [44,52] |
Maumee Rive | 2.74 | 0.07 | 14.26 | 16 | 0.3 | 83.7 | [53] |
Jourdon River | 0.03 | 0.16 | 0.97 | 3 | 14 | 83 | [55] |
Chena River | 0.03–0.30 | 0.06 ± 0.06 | 0.6 | 19 | 7 | 74 | [56] |
Jiulong River | 2.14 | 0.55 | 5.11 | 27 | 7 | 66 | [8] |
Scheldt estuary | 3.3 | 0.7 | 5.2 | 36 | 8 | 56 | [54] |
Dafengjiang River | 0.22–1.59 (1.06 ± 0.46) | 0.10–0.91 (0.45 ± 0.26) | 0.22 | 58 | 27 | 15 | This study |
T | S | pH | DO | DIN | DSi | Chl-a | DIP | DOP | TDP | TPP | TP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | ||||||||||||
S | 0.343 | |||||||||||
pH | 0.384 | 0.944 a | ||||||||||
DO | 0.429 b | 0.674 a | 0.815 a | |||||||||
DIN | −0.445 b | −0.967 a | −0.971 a | −0.771 a | ||||||||
DSi | −0.402 b | −0.960 a | −0.972 a | −0.754 a | 0.974 a | |||||||
Chl-a | 0.072 | 0.342 | 0.216 | 0.144 | −0.318 | −0.299 | ||||||
DIP | −0.356 | −0.931 a | −0.956 a | −0.770 a | 0.955 a | 0.949 a | −0.253 | |||||
DOP | −0.301 | −0.331 | −0.227 | −0.118 | 0.317 | 0.206 | −0.435 b | 0.214 | ||||
TDP | −0.424 b | −0.877 a | −0.843 a | −0.646 a | 0.888 a | 0.827 a | −0.413 b | 0.870 a | 0.668 a | |||
TPP | −0.003 | −0.176 | −0.145 | 0.056 | 0.205 | 0.206 | −0.168 | 0.202 | −0.118 | 0.094 | ||
TP | −0.419 b | −0.882 a | −0.846 a | −0.634 a | 0.895 a | 0.835 a | −0.422 b | 0.877 a | 0.650 a | 0..996 a | 0.179 |
F1 | F2 | F3 | |
---|---|---|---|
S | −0.951 | −0.402 | −0.083 |
pH | −0.983 | −0.250 | −0.008 |
DO | −0.831 | 0.079 | 0.233 |
DIN | 0.986 | 0.372 | 0.047 |
DSi | 0.971 | 0.283 | 0.090 |
Chl-a | −0.258 | −0.758 | −0.293 |
DIP | 0.971 | 0.283 | 0.079 |
DOP | 0.301 | 0.902 | −0.302 |
TDP | 0.892 | 0.671 | −0.092 |
TPP | 0.147 | 0.079 | 0.863 |
TP | 0.894 | 0.670 | −0.017 |
Eigenvalue | 7.607 | 1.456 | 1.167 |
% of variance | 63.39 | 12.14 | 9.720 |
Cumulative% of variance | 63.39 | 75.53 | 85.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Kang, Z.-J.; Lu, D.-L.; Dan, S.F.; Ning, Z.-M.; Lan, W.-L.; Zhong, Q.-P. Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf. Water 2018, 10, 1103. https://doi.org/10.3390/w10081103
Yang B, Kang Z-J, Lu D-L, Dan SF, Ning Z-M, Lan W-L, Zhong Q-P. Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf. Water. 2018; 10(8):1103. https://doi.org/10.3390/w10081103
Chicago/Turabian StyleYang, Bin, Zhen-Jun Kang, Dong-Liang Lu, Solomon Felix Dan, Zhi-Ming Ning, Wen-Lu Lan, and Qiu-Ping Zhong. 2018. "Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf" Water 10, no. 8: 1103. https://doi.org/10.3390/w10081103
APA StyleYang, B., Kang, Z. -J., Lu, D. -L., Dan, S. F., Ning, Z. -M., Lan, W. -L., & Zhong, Q. -P. (2018). Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf. Water, 10(8), 1103. https://doi.org/10.3390/w10081103