Assessment of Local Climate Change: Historical Trends and RCM Multi-Model Projections Over the Salento Area (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Available Data
2.2. Analysis of the Historical Data
2.3. Analysis of the Climate Model Data
3. Results and Discussion
3.1. Accumulated Anomalies
3.2. Historical Trends
3.3. Regional Model Projections
3.4. Future Heat Waves
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement. 2015. Available online: https://unfccc.int/process/conferences/pastconferences/paris-climate-change-conference-november-2015/paris-agreement (accessed on 27 June 2018).
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Philandras, C.M.; Nastos, P.T.; Kapsomenakis, J.; Douvis, K.C.; Tselioudis, G.; Zerefos, C.S. Long term precipitation trends and variability within the Mediterranean region. Nat. Hazards Earth Syst. Sci. 2011, 11, 3235–3250. [Google Scholar] [CrossRef] [Green Version]
- Desiato, F.; Fioravanti, G.; Fraschetti, P.; Perconti, W.; Piervitali, E.; Pavan, V. Gli Indicatori del CLIMA in Italia nel 2016. (Climate Indicators in Italy 2016); Stato dell’Ambiente; The Italian National Institute for Environmental Protection and Research (ISPRA): Rome, Italy, 2017; Volume 72, ISBN 978-88-448-0723-8. (In Italian) [Google Scholar]
- Turco, M.; Llasat, M.C.; Herrera, S.; Gutiérrez, J.M. Bias correction and downscaling of future RCM precipitation projections using a MOS-Analog technique. J. Geophys. Res. Atmos. 2017, 122, 2631–2648. [Google Scholar] [CrossRef] [Green Version]
- Hostetler, S.W.; Alder, J.R.; Allan, A.M. Dynamically Downscaled Climate Simulations over North America: Methods, Evaluation, and Supporting Documentation for Users; Open-File Report 2011-1238; U.S. Geological Survey: Reston, VA, USA, 2011; p. 64.
- Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 2008, 35, L20709. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- D’Oria, M.; Ferraresi, M.; Tanda, M.G. Historical trends and high-resolution future climate projections in northern Tuscany (Italy). J. Hydrol. 2017, 555, 708–723. [Google Scholar] [CrossRef]
- Alpert, P.; Krichak, S.O.; Shafir, H.; Haim, D.; Osetinsky, I. Climatic trends to extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Glob. Planet. Chang. 2008, 63, 163–170. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Dubrovský, M.; Hayes, M.; Duce, P.; Trnka, M.; Svoboda, M.; Zara, P. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Reg. Environ. Chang. 2014, 14, 1907–1919. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Türkeş, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg. Environ. Chang. 2016, 16, 1863–1876. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H. Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA). Environ. Int. 2018, 117, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Desiato, F.; Fioravanti, G.; Fraschetti, P.; Perconti, W.; Piervitali, E. Il Clima Futuro in Italia: Analisi delle Proiezioni dei Modelli Regionali (The Future Climate in Italy: Analysis of the Regional Model Projections); Stato dell’Ambiente; The Italian National Institute for Environmental Protection and Research (ISPRA): Rome, Italy, 2015; Volume 58, ISBN 978-88-448-0723-8. (In Italian) [Google Scholar]
- Ruti, P.M.; Somot, S.; Giorgi, F.; Dubois, C.; Flaounas, E.; Obermann, A.; Dell’Aquilla, A.; Pisacane, G.; Harzallah, A.; Lombardi, E.; et al. MED-CORDEX initiative for Mediterranean Climate studies. Bull. Am. Meteorol. Soc. 2016, 97, 1187–1208. [Google Scholar] [CrossRef]
- Kapur, B.; Steduto, P.; Todorovic, M. Prediction of Climatic Change for the Next 100 Years in the Apulia Region, Southern Italy. Ital. J. Agron. 2007, 2, 365–372. [Google Scholar] [CrossRef]
- Lionello, P.; Congedi, L.; Reale, M.; Scarascia, L.; Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Chang. 2013, 14, 2025–2038. [Google Scholar] [CrossRef]
- Mann, H.B. Non parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Van der Linden, P.; Mitchell, J.F.B. ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exeter, UK, 2009.
- Gualdi, S.; Somot, S.; May, W.; Castellari, S.; Déqué, M.; Adani, M.; Artale, V.; Bellucci, A.; Breitgand, J.S.; Carillo, A.; et al. Future Climate Projections. In Regional Assessment of Climate Change in the Mediterranean; Navarra, A., Tubiana, L., Eds.; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-5781-3. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; De Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grübler, A.; Jung, T.Y.; Kram, T.; et al. IPCC Special Report on Emission Scenarios; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- Lozowski, E.P.; Charlton, R.B.; Nguyen, C.D.; Wilson, J.D. The Use of Cumulative Monthly Mean Temperature Anomalies in the Analysis of Local Interannual Climate Variability. J. Clim. 1989, 2, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Chamberlin, T.C. The method of multiple working hypotheses. Science 1890, 15, 92–96. [Google Scholar] [CrossRef]
- Delle Rose, M.; Martano, P. Infiltration and Short-Time Recharge in Deep Karst Aquifer of the Salento Peninsula (Southern Italy): An Observational Study. Water 2018, 10, 260. [Google Scholar] [CrossRef]
- Parisi, A.; Monno, V.; Fidelibus, M.D. Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. Int. J. Disaster Risk Reduct. 2018. [Google Scholar] [CrossRef]
GCM | ||||||
---|---|---|---|---|---|---|
CNRM-CM5 | EC-EARTH | HadGEM2-ES | MPI-ESM-LR | IPSL-CM5A-MR | ||
RCM | CCLM4-8-17 | X | X | X | X | |
HIRHAM5 | X | |||||
WRF331F | X | |||||
RACMO22E | X | X | ||||
RCA4 | X | X | X | X | X |
Precipitation | No. of Rainy Days | |||||||
---|---|---|---|---|---|---|---|---|
1933–2012 | 1976–2012 | 1933–2012 | 1976–2012 | |||||
S | S | S | S | |||||
January | −3.01 | 0 | 2.33 | 0 | −0.27 | 0 | 0.24 | 0 |
February | −0.32 | 0 | −1.68 | 0 | 0.15 | 0 | −0.27 | 0 |
March | 1.68 | 0 | 3.59 | 0 | 0.08 | 0 | −0.24 | 0 |
April | 1.97 | 0 | 2.83 | 0 | 0.29 | 1 | 0.46 | 0 |
May | −0.35 | 0 | 3.58 | 0 | −0.05 | 0 | 0.14 | 0 |
June | 0.24 | 0 | 1.68 | 0 | 0.06 | 0 | 0.14 | 0 |
July | 0.75 | 0 | 2.11 | 0 | 0.10 | 0 | 0.16 | 0 |
August | −0.42 | 0 | −3.29 | 0 | −0.01 | 0 | −0.42 | 0 |
September | 2.49 | 1 | 12.60 | 1 | 0.25 | 1 | 0.77 | 1 |
October | −1.50 | 0 | −1.32 | 0 | −0.06 | 0 | 0.06 | 0 |
November | −0.99 | 0 | 3.29 | 0 | 0.00 | 0 | −0.28 | 0 |
December | −3.28 | 0 | 7.89 | 0 | 0.04 | 0 | 0.62 | 0 |
Year | −2.39 | 0 | 41.06 | 1 | 0.61 | 0 | 0.91 | 0 |
Tmin | Tmax | Tmean | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1933–2012 | 1976–2012 | 1933–2012 | 1976–2012 | 1933–2012 | 1976–2012 | |||||||
S | S | S | S | S | S | |||||||
January | 0.20 | 1 | 0.13 | 0 | 0.09 | 1 | 0.22 | 0 | 0.15 | 1 | 0.17 | 0 |
February | 0.09 | 0 | −0.15 | 0 | −0.05 | 0 | 0.22 | 0 | 0.03 | 0 | 0.13 | 0 |
March | 0.20 | 1 | 0.19 | 0 | 0.04 | 0 | 0.35 | 0 | 0.11 | 0 | 0.23 | 0 |
April | 0.17 | 1 | 0.47 | 1 | −0.10 | 0 | 0.73 | 1 | 0.04 | 0 | 0.61 | 1 |
May | 0.30 | 1 | 0.53 | 1 | 0.06 | 0 | 0.71 | 1 | 0.17 | 1 | 0.65 | 1 |
June | 0.25 | 1 | 0.71 | 1 | −0.02 | 0 | 0.94 | 1 | 0.12 | 0 | 0.82 | 1 |
July | 0.24 | 1 | 0.79 | 1 | −0.09 | 1 | 0.88 | 1 | 0.08 | 0 | 0.86 | 1 |
August | 0.27 | 1 | 0.79 | 1 | −0.02 | 0 | 1.09 | 1 | 0.13 | 0 | 0.97 | 1 |
September | 0.13 | 1 | 0.57 | 1 | −0.17 | 1 | 0.42 | 1 | −0.02 | 0 | 0.51 | 1 |
October | 0.15 | 1 | 0.16 | 0 | −0.08 | 0 | 0.32 | 0 | 0.04 | 0 | 0.24 | 0 |
November | 0.07 | 0 | 0.33 | 0 | −0.05 | 0 | 0.59 | 1 | 0.00 | 0 | 0.41 | 1 |
December | 0.09 | 0 | 0.07 | 0 | 0.00 | 0 | 0.27 | 1 | 0.05 | 0 | 0.18 | 0 |
Year | 0.18 | 1 | 0.41 | 1 | −0.05 | 0 | 0.57 | 1 | 0.07 | 1 | 0.49 | 1 |
RCP4.5 | RCP8.5 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RP | ST | MT | LT | ST | MT | LT | ||||||||
Obs. | Diff. | Diff. | Diff. | Diff. | Diff. | Diff. | ||||||||
J | 66.55 | 63.29 | 75.33 | +19.0 | 68.09 | +7.6 | 69.15 | +9.3 | 67.66 | +6.9 | 70.98 | +12.1 | 61.26 | −3.2 |
F | 48.32 | 55.57 | 54.38 | −2.1 | 56.94 | +2.5 | 58.18 | +4.7 | 51.20 | −7.9 * | 50.75 | −8.7 | 49.09 | −11.7 * |
M | 58.43 | 60.73 | 61.51 | +1.3 | 52.58 | −13.4 * | 53.93 | −11.2 * | 61.49 | +1.2 | 55.81 | −8.1 * | 55.71 | −8.3 * |
A | 48.46 | 47.86 | 42.58 | −11.0 * | 43.13 | −9.9 * | 38.92 | −18.7 * | 44.05 | −8.0 * | 40.13 | −16.2 * | 36.15 | −24.5 * |
M | 30.39 | 29.96 | 29.24 | −2.4 | 27.71 | −7.5 | 26.65 | −11.1 | 30.53 | +1.9 | 27.05 | −9.7 * | 20.22 | −32.5 * |
J | 19.97 | 20.89 | 20.43 | −2.2 | 22.55 | +7.9 | 21.94 | +5.0 * | 21.82 | +4.4 | 19.76 | −5.4 | 15.87 | −24.0 * |
J | 22.81 | 21.63 | 18.06 | −16.5 * | 16.97 | −21.6 * | 18.39 | −15.0 * | 16.87 | −22.0 * | 16.44 | −24.0 * | 14.26 | −34.1 * |
A | 24.12 | 27.86 | 29.07 | +4.3 | 21.08 | −24.3 | 24.34 | −12.7 | 25.06 | −10.1 | 21.36 | −23.3 * | 21.10 | −24.3 * |
S | 53.02 | 46.50 | 46.84 | +0.7 | 49.19 | +5.8 * | 44.83 | −3.6 | 46.31 | −0.4 | 45.08 | −3.1 | 40.35 | −13.2 |
O | 72.74 | 76.42 | 81.72 | +6.9 | 77.15 | +1.0 | 79.95 | +4.6 | 81.88 | +7.2 * | 79.97 | +4.6 | 81.24 | +6.3 |
N | 89.62 | 92.93 | 102.98 | +10.8 * | 108.63 | +16.9 * | 102.97 | +10.8 * | 111.71 | +20.2 * | 109.87 | +18.2 * | 106.03 | +14.1 * |
D | 82.13 | 80.05 | 76.06 | −5.0 | 82.50 | +3.1 | 77.96 | −2.6 | 80.28 | +0.3 | 89.70 | +12.1 * | 75.26 | −6.0 |
Y | 616.56 | 623.70 | 638.20 | +2.3 | 626.51 | +0.5 | 617.19 | −1.0 | 638.87 | +2.4 | 626.90 | +0.5 | 576.53 | −7.6 |
RCP4.5 | RCP8.5 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RP | ST | MT | LT | ST | MT | LT | ||||||||
Obs. | Diff. | Diff. | Diff. | Diff. | Diff. | Diff. | ||||||||
J | 9.18 | 9.19 | 9.58 | 0.39 * | 10.33 | 1.13 * | 10.98 | 1.79 * | 9.84 | 0.65 * | 10.93 | 1.74 * | 12.68 | 3.49 * |
F | 9.27 | 9.27 | 9.98 | 0.71 * | 10.67 | 1.40 * | 11.10 | 1.83 * | 10.21 | 0.93 * | 11.13 | 1.85 * | 13.04 | 3.76 * |
M | 11.21 | 11.24 | 11.98 | 0.74 * | 12.67 | 1.43 * | 13.08 | 1.84 * | 12.07 | 0.83 * | 13.16 | 1.92 * | 14.86 | 3.62 * |
A | 13.97 | 13.91 | 14.57 | 0.67 * | 15.12 | 1.21 * | 15.60 | 1.69 * | 14.65 | 0.74 * | 15.76 | 1.85 * | 17.46 | 3.55 * |
M | 18.72 | 18.54 | 19.24 | 0.70 * | 19.96 | 1.42 * | 20.62 | 2.08 * | 19.49 | 0.95 * | 20.59 | 2.05 * | 22.63 | 4.08 * |
J | 22.89 | 22.74 | 23.73 | 1.00 * | 24.53 | 1.80 * | 25.05 | 2.31 * | 23.83 | 1.10 * | 25.29 | 2.55 * | 27.53 | 4.79 * |
J | 25.63 | 25.39 | 26.55 | 1.16 * | 27.50 | 2.11 * | 27.96 | 2.57 * | 26.73 | 1.34 * | 28.11 | 2.72 * | 30.57 | 5.18 * |
A | 25.89 | 25.44 | 26.32 | 0.87 * | 27.57 | 2.13 * | 28.03 | 2.59 * | 26.71 | 1.27 * | 28.22 | 2.77 * | 30.59 | 5.15 * |
S | 21.88 | 21.89 | 22.88 | 0.98 * | 23.68 | 1.79 * | 24.40 | 2.50 * | 22.92 | 1.02 * | 24.24 | 2.35 * | 26.87 | 4.97 * |
O | 18.17 | 18.02 | 18.73 | 0.72 * | 19.45 | 1.43 * | 20.02 | 2.00 * | 18.89 | 0.87 * | 20.24 | 2.23 * | 21.94 | 3.92 * |
N | 13.57 | 13.49 | 13.95 | 0.46 * | 14.85 | 1.36 * | 15.27 | 1.78 * | 14.43 | 0.94 * | 15.58 | 2.09 * | 17.30 | 3.81 * |
D | 10.08 | 10.23 | 10.93 | 0.70 * | 11.45 | 1.22 * | 11.91 | 1.68 * | 10.88 | 0.65 * | 11.96 | 1.73 * | 13.88 | 3.65 * |
Y | 16.70 | 16.61 | 17.37 | 0.76 * | 18.15 | 1.54 * | 18.67 | 2.06 * | 17.55 | 0.94 * | 18.77 | 2.15 * | 20.78 | 4.17 * |
No. of Consecutive Days | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Frequency of the heat waves per year | RP | - | 4.6 | 2.9 | 1.8 | 1.2 | 0.8 | 0.5 | 0.3 | 0.2 | 0.1 | 0.0 |
ST | RCP 4.5 | 11.0 | 7.7 | 5.6 | 4.0 | 3.0 | 2.3 | 1.7 | 1.4 | 1.1 | 0.8 | |
RCP 8.5 | 13.5 | 9.8 | 7.1 | 5.4 | 4.1 | 3.2 | 2.5 | 2.0 | 1.5 | 1.2 | ||
MT | RCP 4.5 | 22.4 | 17.6 | 14.1 | 11.6 | 9.7 | 8.1 | 6.9 | 5.8 | 5.0 | 4.4 | |
RCP 8.5 | 31.7 | 26.2 | 22.1 | 19.0 | 16.6 | 14.6 | 12.9 | 11.6 | 10.5 | 9.4 | ||
LT | RCP 4.5 | 27.9 | 22.5 | 18.4 | 15.4 | 13.0 | 11.2 | 9.8 | 8.6 | 7.6 | 6.8 | |
RCP 8.5 | 65.6 | 58.8 | 53.4 | 49.1 | 45.5 | 42.4 | 39.8 | 37.3 | 35.2 | 33.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Oria, M.; Tanda, M.G.; Todaro, V. Assessment of Local Climate Change: Historical Trends and RCM Multi-Model Projections Over the Salento Area (Italy). Water 2018, 10, 978. https://doi.org/10.3390/w10080978
D’Oria M, Tanda MG, Todaro V. Assessment of Local Climate Change: Historical Trends and RCM Multi-Model Projections Over the Salento Area (Italy). Water. 2018; 10(8):978. https://doi.org/10.3390/w10080978
Chicago/Turabian StyleD’Oria, Marco, Maria Giovanna Tanda, and Valeria Todaro. 2018. "Assessment of Local Climate Change: Historical Trends and RCM Multi-Model Projections Over the Salento Area (Italy)" Water 10, no. 8: 978. https://doi.org/10.3390/w10080978
APA StyleD’Oria, M., Tanda, M. G., & Todaro, V. (2018). Assessment of Local Climate Change: Historical Trends and RCM Multi-Model Projections Over the Salento Area (Italy). Water, 10(8), 978. https://doi.org/10.3390/w10080978